+0  
 
0
351
1
avatar+598 

Find the sum of the real values of $x$ such that the infinite geometric series $x+\frac{1}{2}x^3+\frac{1}{4}x^5+\frac{1}{8}x^7+\dots$ is equal to $-12$.

michaelcai  Oct 6, 2017
edited by michaelcai  Oct 6, 2017
 #1
avatar+93305 
+1

Find the sum of the real values of x such that the infinite geometric series \(x+\frac{1}{2}x^3+\frac{1}{4}x^5+\frac{1}{8}x^7+\dots\text{ is equal to }-12\)

 

This is the sum of a GP

\(a=x\\ r=0.5x^2\\ S_\infty=\frac{a}{1-r}\;\;where\;\;|r|<1\\ |0.5x^2|<1\\ 0.5x^2<1\\ x^2<2\\ -\sqrt2

\(S_\infty=\frac{x}{1-0.5x^2}\\ -12=\frac{x}{1-0.5x^2}\\ -12(1-0.5x^2)=x \\ -12+6x^2=x \\ 6x^2-x -12=0 \\ 6x^2-9x+8x -12=0 \\ 3x(2x-3)+4(2x-3)=0\\ (3x+4)(2x-3)=0\\ x=-4/3\quad or \quad x=3/2\\ 3/2 >\sqrt2\quad \text{so it is illiminated}\\~\\ \therefore\;\;x=-1\frac{1}{3} \)

 

check

 

\(a=-4/3\quad  \\  r=0.5*16/9 = 8/9\\ S_\infty=\frac{-4}{3(1-\frac{8}{9})}\\ S_\infty=-12\\\)

Melody  Oct 6, 2017

15 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.