+0  
 
0
609
2
avatar

Ignoring air resistance, how long would it take a particle to drop .03 meters due to gravity?

 Oct 13, 2015

Best Answer 

 #1
avatar+6251 
+5

\(h(t)=-9.8 \dfrac {t^2}{2}+v_0 t + h_0 \\ \mbox{In this case we have }v_0=0 \mbox{ and we'll let }h_0=0.03 \mbox{ and solve for when }h=0\)

 

\(0=-4.9 t^2 + 0.03 \\ 4.9t^2 = 0.03 \\ t^2 = \dfrac{0.03}{4.9} \\ t=\sqrt{ \dfrac{0.03}{4.9}} = 0.078s\)

.
 Oct 13, 2015
 #1
avatar+6251 
+5
Best Answer

\(h(t)=-9.8 \dfrac {t^2}{2}+v_0 t + h_0 \\ \mbox{In this case we have }v_0=0 \mbox{ and we'll let }h_0=0.03 \mbox{ and solve for when }h=0\)

 

\(0=-4.9 t^2 + 0.03 \\ 4.9t^2 = 0.03 \\ t^2 = \dfrac{0.03}{4.9} \\ t=\sqrt{ \dfrac{0.03}{4.9}} = 0.078s\)

Rom Oct 13, 2015
 #2
avatar
+5

Use this famous formula: D=1/2.g.t^2, where D=distance the object has fallen, g=9.81m/sec(the pull of gravity), t=time in seconds.

 Oct 13, 2015

1 Online Users

avatar