knowing that Tan(45)=1, find Sin(45) and Cos(45) with the fonamental relations
Tan (45) = y / x = 1 / 1
And
Sin (45) = y / r and Cos (45) = x / r = 1 / r
And r = sqrt (1 + 1) = sqrt (2)
So
Sin (45) = Cos (45) = 1 / r = 1 / sqrt (2) = sqrt (2) / 2
knowing that Tan(45)=1, find Sin(45) and Cos(45) with the fonamental relations
\(\tan(45^{\circ}) = 1 \\ \cot(45^{\circ}) = \frac{1}{\tan(45^{\circ})} = \frac{1}{1}=1 \)
Formula:
\(\begin{array}{|rcll|} \hline \sin^2(x)+\cos^2(x) &=& 1 \\ \hline \end{array}\)
\(\begin{array}{|rcll|} \hline \sin^2(45^{\circ})+\cos^2(45^{\circ}) &=& 1 \quad & | \quad : \cos^2(45^{\circ}) \\ \frac{ \sin^2(45^{\circ})+\cos^2(45^{\circ}) } {\cos^2(45^{\circ})} &=& \frac{ 1 } {\cos^2(45^{\circ})} \\ \frac{ \sin^2(45^{\circ}) }{\cos^2(45^{\circ})} + \frac{ \cos^2(45^{\circ}) } {\cos^2(45^{\circ})} &=& \frac{ 1 } {\cos^2(45^{\circ})} \\ \tan^2(45^{\circ}) + 1 &=& \frac{ 1 } {\cos^2(45^{\circ})} \quad & | \quad \tan(45^{\circ}) = 1 \\ 1 + 1 &=& \frac{ 1 } {\cos^2(45^{\circ})} \\ 2 &=& \frac{ 1 } {\cos^2(45^{\circ})} \quad & | \quad \text{square root both sides} \\ \sqrt{2} &=& \frac{ 1 } {\cos(45^{\circ})} \\ \mathbf{ \frac{1}{\sqrt{2}} } & \mathbf{=} & \mathbf{ \cos(45^{\circ}) } \\ \hline \end{array}\)
\(\begin{array}{|rcll|} \hline \sin^2(45^{\circ})+\cos^2(45^{\circ}) &=& 1 \quad & | \quad : \sin^2(45^{\circ}) \\ \frac{ \sin^2(45^{\circ})+\cos^2(45^{\circ}) } {\sin^2(x)} &=& \frac{ 1 } {\sin^2(45^{\circ})} \\ \frac{ \sin^2(45^{\circ}) }{\sin^2(45^{\circ})} + \frac{ \cos^2(45^{\circ}) } {\sin^2(45^{\circ})} &=& \frac{ 1 } {\sin^2(45^{\circ})} \\ 1+ \cot^2(45^{\circ}) &=& \frac{ 1 } {\sin^2(45^{\circ})} \quad & | \quad \cot(45^{\circ}) = 1 \\ 1+ 1 &=& \frac{ 1 } {\sin^2(45^{\circ})} \\ 2 &=& \frac{ 1 } {\sin^2(45^{\circ})} \quad & | \quad \text{square root both sides} \\ \sqrt{2} &=& \frac{ 1 } {\sin(45^{\circ})} \\ \mathbf{ \frac{1}{\sqrt{2}} } & \mathbf{=} & \mathbf{ \sin(45^{\circ}) } \\ \hline \end{array}\)