+0  
 
0
738
1
avatar+9673 

\(\displaystyle\lim_{x\rightarrow 0}\dfrac{\sin ^2x - x}{\cos x - 1}\\ =\displaystyle\lim_{x\rightarrow 0}\dfrac{\sin 2x - 1}{-\sin x}\\ =-\dfrac{1}{0}\\ =\infty\)

 

Am I correct?

 

\(\mbox{Footnote:}\\ \dfrac{\mathtt d}{\mathtt dx}\sin^2x\\ u=\sin x\,\,\, y= u^2\\ \dfrac{\mathtt dy}{\mathtt dx}=\dfrac{\mathtt dy}{\mathtt du}\times \dfrac{\mathtt du}{\mathtt dx}\\ = 2u\times \cos x\\ = 2\sin x \cos x\\ = \sin 2x\)

 Aug 18, 2016
 #1
avatar+33661 
0

This graph might help you answer your question

 

 Aug 18, 2016

5 Online Users

avatar