+0  
 
0
329
4
avatar+248 

Question: Solve y''(t) - 2y'(t)-3y(t) = 0 where y(0) = 1 and y'(0) = 0.

Current answer (just need help with last part):

Let Y(s)=L[y(t)] :

--> [(s^2)Y(s) - sy(0) - y'(0)] - 2[sY(s) - y(0)] -3Y(s) = 0

--> [(s^2)Y(s) - s(1) - 0]        - 2[sY(s) - 1]     -3Y(s) = 0

                                                                   -->Y(s) = (s-2) / (s-3)(s+1)

 

This is where I'm stuck, I need to do the inverse laplace transform here to get the final answer but I'm not sure how I can do it with an equation of this form. Any help is appreciated.

difficulty advanced

Best Answer 

 #3
avatar+18712 
+20

Question: Solve y''(t) - 2y'(t)-3y(t) = 0 where y(0) = 1 and y'(0) = 0.

$$\boxed{
\begin{array}{rcl}
\mathcal{L} \{ y''(t)\} -2\cdot \mathcal{L} \{ y'(t)\}-3\cdot \mathcal{L} \{ y(t)\} = \mathcal{L} \{0\}\\
\end{array}
}$$

$$\boxed{
\begin{array}{rcl}
\mathcal{L} \{ y''(t)\} &=& s^2\cdot \mathcal{L} \{ y(t)\} -s\cdot y(0)-y'(0)\\
\mathcal{L} \{ y''(t)\} &=& s^2\cdot \mathcal{L} \{ y(t)\} -s\cdot 1-0\\
\mathcal{L} \{ y''(t)\} &=& s^2\cdot \mathcal{L} \{ y(t)\} -s \\
\end{array}
}$$

$$\boxed{
\begin{array}{rcl}
-2\cdot \mathcal{L} \{ y'(t)\} &=& -2 \left[ s\cdot \mathcal{L} \{ y(t)\} -y(0)\right]\\
-2\cdot \mathcal{L} \{ y'(t)\} &=& -2 \left[ s\cdot \mathcal{L} \{ y(t)\} -1\right]\\
\end{array}
}$$

$$\begin{array}{rcl}
s^2\cdot \mathcal{L} \{ y(t)\} -s
-2 \left[ s\cdot \mathcal{L} \{ y(t)\} -1\right]
-3\cdot \mathcal{L} \{ y(t)\} &=& \mathcal{L} \{0\} \\
\mathcal{L} \{ y(t)\} \left[ s^2-2\cdot s -3 \right] &=& s-2\\
\mathcal{L} \{ y(t)\} \left[ (s+1)\cdot(s-3) \right] &=& s-2\\
\mathcal{L} \{ y(t)\} &=& \dfrac{ s-2 } {(s+1)\cdot(s-3)} \\
\end{array}$$

$$\boxed{
\begin{array}{rclcc}
& \dfrac{ s-2 } {(s+1)\cdot(s-3)} &=& \dfrac{A}{s+1} + \dfrac{B}{s-3}\\\\
&s-2 &=& A \cdot (s-3) + B \cdot (s+1) \\\\
s=3: & 3-2 &=& 0 + B\cdot 4 \Rightarrow B = \dfrac{1}{4} \\
s=-1: & -1-2 &=& A\cdot(-4) + 0 \Rightarrow A = \dfrac{3}{4}
\end{array}
}$$

$$\begin{array}{rcl}
\mathcal{L} \{ y(t)\} &=& \dfrac{ s-2 } {(s+1)\cdot(s-3)}=\dfrac{A}{s+1} + \dfrac{B}{s-3} = \dfrac{3}{4}\cdot
\left( \dfrac{1}{s+1} \right) + \dfrac{1}{4} \cdot
\left( \dfrac{1}{s-3} \right) \\\\
\mathcal{L} \{ y(t)\} &=& \dfrac{3}{4}\cdot \left( \dfrac{1}{s+1} \right) + \dfrac{1}{4} \cdot \left( \dfrac{1}{s-3} \right)
\end{array}$$

$$\boxed{
\begin{array}{rcl}
\mathcal{L}^{-1} \{ \dfrac{1}{s-a} \} &=& e^{a\cdot t} \\
\end{array}
}$$

 

$$\textcolor[rgb]{150,0,0}{
\begin{array}{rcl}
y(t) &=& \dfrac{3}{4}\cdot e^{-t} + \dfrac{1}{4} \cdot e^{3\cdot t}
\end{array} }$$

Check:

$$\begin{array}{lrcl}
(1)&: y(0) &=& \dfrac{3}{4}+\dfrac{1}{4} = 1 \qquad \text{okay} \\\\
(2)&: y'(t) &=& -\dfrac{3}{4}\cdot e^{-t} + 3\cdot \dfrac{1}{4} \cdot e^{3\cdot t}} \\\\
&: y'(0) &=& -\dfrac{3}{4} + \dfrac{3}{4} = 0 \qquad \text{okay}\\
\end{array}\\\\\\
\underbrace{
\begin{array}{lrcl}
&y''(t) &=& \dfrac{3}{4}\cdot e^{-t} + \dfrac{9}{4}\cdot e^{3\cdot t} \\\\
& -2\cdot y'(t) & =& \dfrac{6}{4}\cdot e^{-t} -\dfrac{6}{4}\cdot e^
{3\cdot t} \\\\
& -3\cdot y(t) & =& -\dfrac{9}{4}\cdot e^{-t} -\dfrac{3}{4}\cdot e^{3\cdot t}
\end{array}
}_{ y''(t)-2\cdot y'(t)-3\cdot y(t)= 0 \qquad \text{okay} }$$

heureka  May 4, 2015
Sort: 

4+0 Answers

 #1
avatar+26322 
+15

This is where partial fractions come in handy.

 

$$\frac{s-2}{(s-3)(s+1)}=\frac{3}{4(s+1)}+\frac{1}{4(s-3)}$$

 

Can you take it from here?

.

Alan  May 4, 2015
 #2
avatar+248 
+5

Cheers yeah its straightforward now --> y(t) = (e^3t)/4 + (3e^-t)/4

 #3
avatar+18712 
+20
Best Answer

Question: Solve y''(t) - 2y'(t)-3y(t) = 0 where y(0) = 1 and y'(0) = 0.

$$\boxed{
\begin{array}{rcl}
\mathcal{L} \{ y''(t)\} -2\cdot \mathcal{L} \{ y'(t)\}-3\cdot \mathcal{L} \{ y(t)\} = \mathcal{L} \{0\}\\
\end{array}
}$$

$$\boxed{
\begin{array}{rcl}
\mathcal{L} \{ y''(t)\} &=& s^2\cdot \mathcal{L} \{ y(t)\} -s\cdot y(0)-y'(0)\\
\mathcal{L} \{ y''(t)\} &=& s^2\cdot \mathcal{L} \{ y(t)\} -s\cdot 1-0\\
\mathcal{L} \{ y''(t)\} &=& s^2\cdot \mathcal{L} \{ y(t)\} -s \\
\end{array}
}$$

$$\boxed{
\begin{array}{rcl}
-2\cdot \mathcal{L} \{ y'(t)\} &=& -2 \left[ s\cdot \mathcal{L} \{ y(t)\} -y(0)\right]\\
-2\cdot \mathcal{L} \{ y'(t)\} &=& -2 \left[ s\cdot \mathcal{L} \{ y(t)\} -1\right]\\
\end{array}
}$$

$$\begin{array}{rcl}
s^2\cdot \mathcal{L} \{ y(t)\} -s
-2 \left[ s\cdot \mathcal{L} \{ y(t)\} -1\right]
-3\cdot \mathcal{L} \{ y(t)\} &=& \mathcal{L} \{0\} \\
\mathcal{L} \{ y(t)\} \left[ s^2-2\cdot s -3 \right] &=& s-2\\
\mathcal{L} \{ y(t)\} \left[ (s+1)\cdot(s-3) \right] &=& s-2\\
\mathcal{L} \{ y(t)\} &=& \dfrac{ s-2 } {(s+1)\cdot(s-3)} \\
\end{array}$$

$$\boxed{
\begin{array}{rclcc}
& \dfrac{ s-2 } {(s+1)\cdot(s-3)} &=& \dfrac{A}{s+1} + \dfrac{B}{s-3}\\\\
&s-2 &=& A \cdot (s-3) + B \cdot (s+1) \\\\
s=3: & 3-2 &=& 0 + B\cdot 4 \Rightarrow B = \dfrac{1}{4} \\
s=-1: & -1-2 &=& A\cdot(-4) + 0 \Rightarrow A = \dfrac{3}{4}
\end{array}
}$$

$$\begin{array}{rcl}
\mathcal{L} \{ y(t)\} &=& \dfrac{ s-2 } {(s+1)\cdot(s-3)}=\dfrac{A}{s+1} + \dfrac{B}{s-3} = \dfrac{3}{4}\cdot
\left( \dfrac{1}{s+1} \right) + \dfrac{1}{4} \cdot
\left( \dfrac{1}{s-3} \right) \\\\
\mathcal{L} \{ y(t)\} &=& \dfrac{3}{4}\cdot \left( \dfrac{1}{s+1} \right) + \dfrac{1}{4} \cdot \left( \dfrac{1}{s-3} \right)
\end{array}$$

$$\boxed{
\begin{array}{rcl}
\mathcal{L}^{-1} \{ \dfrac{1}{s-a} \} &=& e^{a\cdot t} \\
\end{array}
}$$

 

$$\textcolor[rgb]{150,0,0}{
\begin{array}{rcl}
y(t) &=& \dfrac{3}{4}\cdot e^{-t} + \dfrac{1}{4} \cdot e^{3\cdot t}
\end{array} }$$

Check:

$$\begin{array}{lrcl}
(1)&: y(0) &=& \dfrac{3}{4}+\dfrac{1}{4} = 1 \qquad \text{okay} \\\\
(2)&: y'(t) &=& -\dfrac{3}{4}\cdot e^{-t} + 3\cdot \dfrac{1}{4} \cdot e^{3\cdot t}} \\\\
&: y'(0) &=& -\dfrac{3}{4} + \dfrac{3}{4} = 0 \qquad \text{okay}\\
\end{array}\\\\\\
\underbrace{
\begin{array}{lrcl}
&y''(t) &=& \dfrac{3}{4}\cdot e^{-t} + \dfrac{9}{4}\cdot e^{3\cdot t} \\\\
& -2\cdot y'(t) & =& \dfrac{6}{4}\cdot e^{-t} -\dfrac{6}{4}\cdot e^
{3\cdot t} \\\\
& -3\cdot y(t) & =& -\dfrac{9}{4}\cdot e^{-t} -\dfrac{3}{4}\cdot e^{3\cdot t}
\end{array}
}_{ y''(t)-2\cdot y'(t)-3\cdot y(t)= 0 \qquad \text{okay} }$$

heureka  May 4, 2015
 #4
avatar+78557 
0

Vey nice, Alan and heureka....!!!!

These transforms make those DEs a lot more simple to solve.....!!!!

 

  

CPhill  May 4, 2015

13 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details