+0  
 
+1
218
2
avatar

15B.) Solve the following equations algebraically for n *Show working using factorial notation

nP4 = 84 nC2

 

 

 

11.) A teacher makes a multiple-choice quiz with 12 questions. 3 answers are A, 3 answers are B, 2 answers are C and 4 answers are D. How many possible answer keys are possible?

 

 

 

14a.) (n-4)! / 3! (n-2)!

 

edit: I think the answer is n=9

 

b.) nC3 + nC2 + nC1

Guest Nov 27, 2017
edited by Guest  Nov 27, 2017
 #1
avatar+87293 
+1

nP4 = 84 nC2

 

n! / (n - 4)!  = 84 n!  / [ (n - 2)! * 2!]

 

1 / ( n - 4)! = 42 / (n - 2)!

 

(n - 2)! / ( n - 4)!  =  42

 

(n - 2) (n - 3)  = 42

 

n^2 -  5n + 6  = 42

 

n^2 - 5n - 36  = 0

 

(n - 9) ( n + 4)  = 0

 

Setting each factor to 0 and solving for n.......n = 9  or n = -4

 

Take the positive answer ⇒   n  = 9

 

 

cool cool cool

CPhill  Nov 27, 2017
 #2
avatar+87293 
+1

14b.) nC3 + nC2 + nC1    =

 

n! / [ ( n - 3)! * 3! ] + n! / [ (n - 2)! * 2] + n 

 

 ( [ n (n - 1)(n - 2) / 6 ] + [  3 n * (n - 1)] +  6n )   /  6

 

[ n ]  [ (n - 1)(n - 2) + 3(n - 1) + 6] / 6

 

[n]  [ n^2 - 3n + 2 + 3n - 3 + 6 ] / 6

 

[n] [ n^2  + 5] / 6

 

[ n^3 + 5n ]  / 6

 

 

cool cool cool

CPhill  Nov 27, 2017

7 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.