Well to start off, rewrite the problem without using the signs.
\(10 + \frac{(2*3)^2}{4}(\frac{1}{2})^3\)
Then change out the \(\frac{(2*3)^2}{4}\)
\(\frac{(2*3)^2}{4} = \frac{2^2*3^2}{2^2}\)
Then cancle out the common factor of \(2^2\)
your left with \(3^2\)
\(10 + 3^2 (\frac{1}{2})^3\)
Then simplify the \((\frac{1}{2})^3\)
\((\frac{1}{2})^3 = \frac{1^3}{2^3} = \frac{1}{2^3}\)
\(10 + \frac{1 * 3^2}{2^3}\)
\(10 + \frac{ 3^2}{2^3}\)
Simplify the fraction
\(\frac{3^2}{2^3} = \frac{9}{8}\)
Then continue with the equation
\(10 + \frac{9}{8}\)
Convert this element into a fraction
\(\frac{10 * 8}{8}+\frac{9}{8}\)
\(\frac{10 * 8+9}{8}\)
\(\frac{89}{8} = 11 \frac{1}{8}\)
Hope this helps ;P