+0  
 
0
746
2
avatar+1008 

Last Problem

 Mar 27, 2019
 #1
avatar+1008 
+1

This is the problem

 Mar 27, 2019
 #2
avatar+219 
-4

Well to start off, rewrite the problem without using the signs.

\(10 + \frac{(2*3)^2}{4}(\frac{1}{2})^3\)

 

Then change out the \(\frac{(2*3)^2}{4}\)

\(\frac{(2*3)^2}{4} = \frac{2^2*3^2}{2^2}\)

Then cancle out the common factor of \(2^2\)

your left with \(3^2\)

 

\(10 + 3^2 (\frac{1}{2})^3\)

Then simplify the \((\frac{1}{2})^3\)

\((\frac{1}{2})^3 = \frac{1^3}{2^3} = \frac{1}{2^3}\)

 

\(10 + \frac{1 * 3^2}{2^3}\)

\(10 + \frac{ 3^2}{2^3}\)

Simplify the fraction

\(\frac{3^2}{2^3} = \frac{9}{8}\)

Then continue with the equation

\(10 + \frac{9}{8}\)

Convert this element into a fraction

\(\frac{10 * 8}{8}+\frac{9}{8}\)

\(\frac{10 * 8+9}{8}\)

\(\frac{89}{8} = 11 \frac{1}{8}\)

 

 

Hope this helps ;P

 Mar 27, 2019
edited by EmeraldWonder  Mar 27, 2019

2 Online Users

avatar
avatar