+0  
 
0
744
2
avatar

Lee can frame a cabin in 4 days less than Ron. When they work together, they will do the job in 4 days. How long would each of them take to frame the cabin alone?

Guest Oct 7, 2014

Best Answer 

 #2
avatar+93627 
+10

 

 

Lee can frame        $$\frac{1\; cupboard }{x\; days}$$

 

Ron can frame  $$\frac{1\; cupboard }{x+4\; days}$$

 

So together they can frame    

 

 $$\\\frac{1\; cupboard }{x\; days}+\frac{1\; cupboard }{x+4\; days}\\\\
=\frac{(x+4)\; cupboard}{ x*(x+4)days}+\frac{x\; cupboard }{x(x+4)\; days}\\\\
=\frac{(2x+4)\; cupboard}{ x*(x+4)days}\\\\\\$$

 

 

 

 

Now we know that together they can fram one cupboard in 4 days so

 

$$\\\frac{(2x+4)\; cupboard}{ x*(x+4)days}\times \frac{4\;days}{1}=1 cupboard \qquad $NOTE: The days cancel out$\\\\\\$$

 

This gives the equation

$$\\\frac{(2x+4)}{ x*(x+4)}\times \frac{4}{1}=1 \\\\
\frac{4(2x+4)}{ x*(x+4)}=1 \\\\
4(2x+4)=x*(x+4) \\\\
8x+16=x^2+4x \\\\
x^2-4x-16=0 \\\\$$

 

$${{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{16}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{2}}{\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}\\
{\mathtt{x}} = {\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{2.472\: \!135\: \!954\: \!999\: \!579\: \!4}}\\
{\mathtt{x}} = {\mathtt{6.472\: \!135\: \!954\: \!999\: \!579\: \!4}}\\
\end{array} \right\}$$

 

The first  answer is invalid

So individually Lee can fram a cupboard in  6.47 days and Ron will take 10.47  days

Exactly the same as CPhill got.     These are really tricky.    

Melody  Oct 9, 2014
 #1
avatar+89791 
+10

Let x be the number of days that takes Ron to frame the cabin by himself. Then, the number of days it takes Lee to frame the cabin is (x - 4)

Rate *Time  = Work Done

So we have

Ron's Rate * Time  + Lee's Rate * Time  = 1 job done

(1/x)(4) + (1/(x-4))(4) = 1    simplify

4/x + 4/(x-4) = 1                  get a common denominator

[4(x-4) + 4x] / [x(x-4)] = 1    multiply both sides by x(x-4)

4x - 16 + 4x = x(x-4)             simplify

8x - 16 = x^2 - 4x                 rearrange

x^2 - 12x + 16 = 0                using the on-site solver, we have

$${{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{16}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}\\
{\mathtt{x}} = {\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{1.527\: \!864\: \!045\: \!000\: \!420\: \!6}}\\
{\mathtt{x}} = {\mathtt{10.472\: \!135\: \!954\: \!999\: \!579\: \!4}}\\
\end{array} \right\}$$

Reject the first answer

So Ron takes about 10.47 days and Lee takes 4 fewer days = about 6.47 days

The answers seem funky.....anyone else want to take a stab ???

 

CPhill  Oct 7, 2014
 #2
avatar+93627 
+10
Best Answer

 

 

Lee can frame        $$\frac{1\; cupboard }{x\; days}$$

 

Ron can frame  $$\frac{1\; cupboard }{x+4\; days}$$

 

So together they can frame    

 

 $$\\\frac{1\; cupboard }{x\; days}+\frac{1\; cupboard }{x+4\; days}\\\\
=\frac{(x+4)\; cupboard}{ x*(x+4)days}+\frac{x\; cupboard }{x(x+4)\; days}\\\\
=\frac{(2x+4)\; cupboard}{ x*(x+4)days}\\\\\\$$

 

 

 

 

Now we know that together they can fram one cupboard in 4 days so

 

$$\\\frac{(2x+4)\; cupboard}{ x*(x+4)days}\times \frac{4\;days}{1}=1 cupboard \qquad $NOTE: The days cancel out$\\\\\\$$

 

This gives the equation

$$\\\frac{(2x+4)}{ x*(x+4)}\times \frac{4}{1}=1 \\\\
\frac{4(2x+4)}{ x*(x+4)}=1 \\\\
4(2x+4)=x*(x+4) \\\\
8x+16=x^2+4x \\\\
x^2-4x-16=0 \\\\$$

 

$${{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{16}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{2}}{\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}\\
{\mathtt{x}} = {\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{2.472\: \!135\: \!954\: \!999\: \!579\: \!4}}\\
{\mathtt{x}} = {\mathtt{6.472\: \!135\: \!954\: \!999\: \!579\: \!4}}\\
\end{array} \right\}$$

 

The first  answer is invalid

So individually Lee can fram a cupboard in  6.47 days and Ron will take 10.47  days

Exactly the same as CPhill got.     These are really tricky.    

Melody  Oct 9, 2014

40 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.