+0  
 
0
583
1
avatar

(2-2i)^6(sqrt{3}+1)^3/(sqrt{3}+i)^4

Guest Aug 6, 2015

Best Answer 

 #1
avatar+93365 
+10

$$\\\dfrac{(2-2i)^6(\sqrt{3}+1)^3}{(\sqrt{3}+i)^4}\\\\\\
\dfrac{(2-2i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{(\sqrt{3}+i)^4(\sqrt{3}-i)^4}\\\\\\
\dfrac{2^6(1-i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{\{(\sqrt{3}+i)(\sqrt{3}-i)\}^4}\\\\\\
\dfrac{2^6(1-i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{(3--1)^4}\\\\\\
\dfrac{2^6(1-i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{(4)^4}\\\\\\
\dfrac{2^6(1-i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{(2)^8}\\\\\\$$

 

$$\\\dfrac{(1-i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{4}\\\\\\$$

 

The rest is just painful expansion.  Maybe you do not need to go any further.

(1-i)^6 will work out the easiest.  Use binomial expansions. 

If you need help expanding I suggest you ask for it.   :) 

Melody  Aug 7, 2015
 #1
avatar+93365 
+10
Best Answer

$$\\\dfrac{(2-2i)^6(\sqrt{3}+1)^3}{(\sqrt{3}+i)^4}\\\\\\
\dfrac{(2-2i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{(\sqrt{3}+i)^4(\sqrt{3}-i)^4}\\\\\\
\dfrac{2^6(1-i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{\{(\sqrt{3}+i)(\sqrt{3}-i)\}^4}\\\\\\
\dfrac{2^6(1-i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{(3--1)^4}\\\\\\
\dfrac{2^6(1-i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{(4)^4}\\\\\\
\dfrac{2^6(1-i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{(2)^8}\\\\\\$$

 

$$\\\dfrac{(1-i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{4}\\\\\\$$

 

The rest is just painful expansion.  Maybe you do not need to go any further.

(1-i)^6 will work out the easiest.  Use binomial expansions. 

If you need help expanding I suggest you ask for it.   :) 

Melody  Aug 7, 2015

45 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.