+0  
 
0
448
1
avatar

(2-2i)^6(sqrt{3}+1)^3/(sqrt{3}+i)^4

Guest Aug 6, 2015

Best Answer 

 #1
avatar+92194 
+10

$$\\\dfrac{(2-2i)^6(\sqrt{3}+1)^3}{(\sqrt{3}+i)^4}\\\\\\
\dfrac{(2-2i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{(\sqrt{3}+i)^4(\sqrt{3}-i)^4}\\\\\\
\dfrac{2^6(1-i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{\{(\sqrt{3}+i)(\sqrt{3}-i)\}^4}\\\\\\
\dfrac{2^6(1-i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{(3--1)^4}\\\\\\
\dfrac{2^6(1-i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{(4)^4}\\\\\\
\dfrac{2^6(1-i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{(2)^8}\\\\\\$$

 

$$\\\dfrac{(1-i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{4}\\\\\\$$

 

The rest is just painful expansion.  Maybe you do not need to go any further.

(1-i)^6 will work out the easiest.  Use binomial expansions. 

If you need help expanding I suggest you ask for it.   :) 

Melody  Aug 7, 2015
Sort: 

1+0 Answers

 #1
avatar+92194 
+10
Best Answer

$$\\\dfrac{(2-2i)^6(\sqrt{3}+1)^3}{(\sqrt{3}+i)^4}\\\\\\
\dfrac{(2-2i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{(\sqrt{3}+i)^4(\sqrt{3}-i)^4}\\\\\\
\dfrac{2^6(1-i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{\{(\sqrt{3}+i)(\sqrt{3}-i)\}^4}\\\\\\
\dfrac{2^6(1-i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{(3--1)^4}\\\\\\
\dfrac{2^6(1-i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{(4)^4}\\\\\\
\dfrac{2^6(1-i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{(2)^8}\\\\\\$$

 

$$\\\dfrac{(1-i)^6(\sqrt{3}+1)^3(\sqrt{3}-i)^4}{4}\\\\\\$$

 

The rest is just painful expansion.  Maybe you do not need to go any further.

(1-i)^6 will work out the easiest.  Use binomial expansions. 

If you need help expanding I suggest you ask for it.   :) 

Melody  Aug 7, 2015

19 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details