+0  
 
0
942
3
avatar+105 


Watching videos on khan academy..hard to follow his length of a vector video. so need a bit of help here. 

u= (1, 2, 3) v= (-2, 0, 1) 

Find the legnth of u & v

i got ||u||= √1²+2²+3² =3.741
       ||v|| = -√2²+0²+1² = -2.236

3.741+ -2.236 = ||u v|| = 1.51

am i doing this right? 

 Jun 18, 2014

Best Answer 

 #3
avatar+105 
+5

Thank you both!! 

 Jun 18, 2014
 #1
avatar+33661 
+5

Length of v is √( (-2)2 + 02 + 12) = √(4+0+1) = √5 

$${\sqrt{{\mathtt{5}}}} = {\mathtt{2.236\: \!067\: \!977\: \!499\: \!789\: \!7}}$$

If the last part is meant to be the length of the vector sum of u and v, then you have to sum the components first, before calculating the length, not add the lengths of the individual vectors together.

u+v = (-1, 2, 4)

length of u+v = √( (-1)2 + 22 + 42) = √21

$${\sqrt{{\mathtt{21}}}} = {\mathtt{4.582\: \!575\: \!694\: \!955\: \!84}}$$

 Jun 18, 2014
 #2
avatar+26393 
+6

u= (1, 2, 3)    

v= (-2, 0, 1) 

$$\vec{w}=\vec{u}+\vec{v}
=
\left(
\begin{array}{c}
1 & 2 & 3
\end{array}
\right)
+\left(
\begin{array}{c}
-2 & 0 & 1
\end{array}
\right)
=
\left(
\begin{array}{c}
1-2 & 2+0 & 3+1
\end{array}
\right)
=
\left(
\begin{array}{c}
-1 & 2 & 4
\end{array}
\right)$$

 

$$\begin{array}{rcl}
\|w\| &=& \sqrt{(-1)^2+2^2+4^2} \\\\
&=&\sqrt{1+4+16}\\\\
&=&\sqrt{21}\\\\
& \approx & 4.58257569496
\end{array}$$

 Jun 18, 2014
 #3
avatar+105 
+5
Best Answer

Thank you both!! 

Strider Jun 18, 2014

2 Online Users