+0  
 
+1
82
3
avatar+2720 

1. Let \(\triangle ABC\) be a right triangle such that \(B \) is a right angle. A circle with diameter  of \(BC\)  meets side \(AC\) at \(D\)  If the area of \(\triangle ABC\) is \(150\)and\(AC = 25,\)  then what is \(BD\)?

tertre  Mar 31, 2018
 #1
avatar+86944 
+2

This one isn't too bad, tertre  !!!

 

Note that a multiple of a 3-4-5 right triangle  is a 15-20-25 right triangle....

Let B = (0,0)

A= (0,15)

C= (20, 0)

 

The area of ABC is  (1/2)BC * BA   =  (1/2)(20)(15)  = 150  which is what we need!!!

 

 

Let the  circle with the diameter of BC  have the equation (x - 10)^2 + y^2  = 100  (1)

And let the slope of the line containing AD   =  -15/20  = -3/4

And the equation of this line is

y  =( -3/4) x  +  15        or

y = (15 - 3/4)x

Square both sides of this

y^2 =  ( 15  - (3/4)x)^2     (1)

Our objective is to find the x coordinate of the second intersection of AC  and this circle 

 

Sub (2)  into (1)  and we have

 

(x - 10)^2  + (15 - (3/4)x)^2  =  100     simplify

x^2 -20x + 100 + 225 - (90/4) x + (9/16) x^2  = 100

x^2 -20x + 225 - (90/4) x  + (9/16)x^2  =  0    multiply through by 16

16x^2 - 320x + 3600 - 360x + 9x^2  =  0

25x^2 - 680x + 3600  =  0

Believe it or not....we can factor this as

 

(5x - 36 (5x - 100)  = 0

 

Set  each factor to 0  ans solve for x and we have that

 

x =36/5    and x  = 20

 

We already know that  the  second value is an x intersection of the line and the circle

 

We are interested in the first.... and this is the x coordinate of D

The y coordinate  is 

y   = ( - 3/4) (36/ 5)  + 15

y  =  -108/20 + 15

y  = -27/ 5 + 75/ 5

y = 48/ 5

 

So.....D  =  ( 36/5, 48/5)

 

So BD is easy to find  as

 

sqrt  [  (36/5)^2  + (48/ 5)^2 ]  =  

sqrt [ 36^2 + 48^2] / 25  =

sqrt [ 3600 ]  / 5 =

60 / 5   =

12 units

 

Note something interesting....that triangle BDC  is  a  12-16-20 right triangle which is another multiple of a 3-4-5 right triangle  !!

 

Here's a pic of all of this :

 

 

 

cool cool cool

CPhill  Mar 31, 2018
 #2
avatar+2720 
+1

Wow, great solution CPhill! Bravo!

tertre  Mar 31, 2018
 #3
avatar
0

Since we know triangle ABC is a 15-20-25 right-angle triangle, then we can easily  find the x coordinate of the second intersection of AC  and this circle as follows:
(150*2) / 25^2 =12/25 x 15 =7.2
(150*2) / 25^2 =12/25 x 20 =9.6, then D =7.2 and 9.6 and:
BD^2 = 7.2^2 + 9.6^2 
BD^2 =144
BD =12

Guest Apr 1, 2018

16 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.