+0  
 
0
1259
3
avatar+1781 

Let $a$, $b$, $c$, and $n$ be positive integers. If $a + b + c = 19 \cdot 97$ and \[a + n = b - n = \frac{c}{n},\] compute the value of $a$.

$$Let $a$, $b$, $c$, and $n$ be positive integers. If $a + b + c = 19 \cdot 97$ and
\[a + n = b - n = \frac{c}{n},\]
compute the value of $a$.$$

Mellie  Jul 2, 2015

Best Answer 

 #2
avatar+19653 
+15

$$\small{\text{$
\begin{array}{lcl}
$Let $ a, b, c, $ and $ n $ be positive integers. If $
a + b + c = 19 \cdot 97 $ and $ \\
\left[a + n = b - n = \dfrac{c}{n}\right],
$ compute the value of $ a .
\end{array}
$}}$$

 

$$\small{\text{$
\begin{array}{lrrrcl}
& a+b+c=19\cdot 97 \\
\\
\hline
\\
(1)& a+n=k \\
(2) & b-n=k &\qquad \qquad (1)+(2): & a+b&=& 2\cdot k\\
(3) & \dfrac{c}{n}=k &\qquad \qquad $so$ & c &=& k\cdot n\\\\
& & & a+b+c &=& 2\cdot k + k\cdot n=19\cdot 97
\\
\hline
\\
\end{array}
$}}\\\\
\small{\text{$
\begin{array}{rrclrcl}
& 2\cdot k + k\cdot n &=& 19\cdot 97\\\\
& k\cdot(2+n)&=& 19\cdot 97\\\\
I. & \textcolor[rgb]{1,0,0}{k}\cdot\textcolor[rgb]{0,0,1}{(2+n)}&=& \textcolor[rgb]{1,0,0}{19}\cdot \textcolor[rgb]{0,0,1}{97}\\\\
& \underline{k=19} && \underline{2+n = 97 }& \qquad \Rightarrow
\qquad n&=& 95\\
& && & a+n&=& k\\
& && & a+95&=& 19\\
& && & a&=& -76 ~$ negative! $\\ \\
II. & \textcolor[rgb]{1,0,0}{k}\cdot\textcolor[rgb]{0,0,1}{(2+n)}&=& \textcolor[rgb]{1,0,0}{97}\cdot \textcolor[rgb]{0,0,1}{19}\\\\
& \underline{k=97} && \underline{2+n = 19 }& \qquad \Rightarrow
\qquad n&=& 17\\
& && & a+n&=& k\\
& && & a+17&=& 97\\
& && & a&=& 80 ~$ okay! $\\
\end{array}
$}}$$

 

heureka  Jul 3, 2015
 #1
avatar+26753 
+15

Integers:

.

Alan  Jul 2, 2015
 #2
avatar+19653 
+15
Best Answer

$$\small{\text{$
\begin{array}{lcl}
$Let $ a, b, c, $ and $ n $ be positive integers. If $
a + b + c = 19 \cdot 97 $ and $ \\
\left[a + n = b - n = \dfrac{c}{n}\right],
$ compute the value of $ a .
\end{array}
$}}$$

 

$$\small{\text{$
\begin{array}{lrrrcl}
& a+b+c=19\cdot 97 \\
\\
\hline
\\
(1)& a+n=k \\
(2) & b-n=k &\qquad \qquad (1)+(2): & a+b&=& 2\cdot k\\
(3) & \dfrac{c}{n}=k &\qquad \qquad $so$ & c &=& k\cdot n\\\\
& & & a+b+c &=& 2\cdot k + k\cdot n=19\cdot 97
\\
\hline
\\
\end{array}
$}}\\\\
\small{\text{$
\begin{array}{rrclrcl}
& 2\cdot k + k\cdot n &=& 19\cdot 97\\\\
& k\cdot(2+n)&=& 19\cdot 97\\\\
I. & \textcolor[rgb]{1,0,0}{k}\cdot\textcolor[rgb]{0,0,1}{(2+n)}&=& \textcolor[rgb]{1,0,0}{19}\cdot \textcolor[rgb]{0,0,1}{97}\\\\
& \underline{k=19} && \underline{2+n = 97 }& \qquad \Rightarrow
\qquad n&=& 95\\
& && & a+n&=& k\\
& && & a+95&=& 19\\
& && & a&=& -76 ~$ negative! $\\ \\
II. & \textcolor[rgb]{1,0,0}{k}\cdot\textcolor[rgb]{0,0,1}{(2+n)}&=& \textcolor[rgb]{1,0,0}{97}\cdot \textcolor[rgb]{0,0,1}{19}\\\\
& \underline{k=97} && \underline{2+n = 19 }& \qquad \Rightarrow
\qquad n&=& 17\\
& && & a+n&=& k\\
& && & a+17&=& 97\\
& && & a&=& 80 ~$ okay! $\\
\end{array}
$}}$$

 

heureka  Jul 3, 2015
 #3
avatar+92805 
+5

2 great answers - thanks Alan and Heureka   

Melody  Jul 3, 2015

7 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.