+0

# Let a,b,c,d be real numbers such that limx→0 sin dx+ cx^5 + bx^3 + ax/x^5 = 0. If b= 4/3 then what is the value of 15ac+ 2?

0
185
1

Let a,b,c,d be real numbers such that limx→0 sin dx+ cx^5 + bx^3 + ax/x^5 = 0. If b= 4/3 then what is the value of 15ac+ 2?

Apr 19, 2022

#1
+1

We expand $$\sin(d\cdot x)$$ using its Taylor series at x = 0.

$$\begin{array}{rcl} \sin(d\cdot x) &=& \displaystyle\sum_{k = 0}^\infty \dfrac{(d\cdot x)^{2k+1}(-1)^k}{(2k + 1)!}\\ &=&\displaystyle\sum_{k = 0}^\infty \dfrac{d^{2k+1}(-1)^k}{(2k + 1)!} x^{2k+1}\\ &=&d\cdot x - \dfrac{d^3}{6}x^3+\dfrac{d^5}{120}x^5-\mathcal O (x^7) \end{array}$$

For $$\displaystyle\lim_{x\to0}\dfrac{\sin(d\cdot x) + cx^5 + bx^3 + ax}{x^5}$$ to exist, the polynomial part must eliminate all terms with degrees lower than 5 of the Taylor expansion above.

Therefore, we have $$\begin{cases}a = -d\\b = \dfrac{d^3}6\\\end{cases}$$. But we also know that $$b = \dfrac43$$.

Comparing gives $$\dfrac{d^3}6 = \dfrac43$$. Solving gives $$d = 2$$.

Then since $$a = -d$$, we have $$a = -2$$.

Therefore, we have:

$$\begin{array}{rcl} \displaystyle\lim_{x\to0}\dfrac{\sin(d\cdot x) + cx^5 + bx^3 + ax}{x^5} &=& \displaystyle\lim_{x\to 0}\dfrac1{x^5}\left(d\cdot x - \dfrac{d^3}6x^3+\dfrac{d^5}{120}x^5-\mathcal O(x^7)+cx^5 + \dfrac{d^3}6x^3 - d\cdot x\right)\\ &=& \displaystyle\lim_{x\to0}\left(\dfrac{d^5}{120} + c - \mathcal O(x^2)\right)\\ &=& \displaystyle\lim_{x\to0}\left(\dfrac{2^5}{120} + c - \mathcal O(x^2)\right)\\ &=& \displaystyle\lim_{x\to0}\left(\dfrac{4}{15} + c - \mathcal O(x^2)\right)\\ &=& \dfrac{4}{15} + c \end{array}$$

But we also know that this limit is 0. Then:

$$\dfrac{4}{15} + c = 0\\ c = -\dfrac{4}{15}$$

Now we know the values of a and c, so

$$\begin{array}{rcl} 15ac + 2 &=& 15 \cdot (-2) \cdot \dfrac{-4}{15} + 2\\ &=& 10 \end{array}$$

Remark: If you are not familiar with the Big $$\mathcal O$$ notation, just treat it as $$\cdots$$.

Apr 19, 2022