We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
51
1
avatar+80 

Let \(a\) and \(b \) be nonzero complex numbers such that \(|a| = |b| = |a + b|\). Find the sum of all possible values of \(\frac{a}{b}\).

 Jun 29, 2019
 #1
avatar+5225 
+1

\(\text{To start let's assume $a=1,~b=e^{i\theta}$}\\ a+b = 1+\cos(\theta)+i \sin(\theta)\\ |a+b| = (1+\cos(\theta))^2 + \sin^2(\theta) = 2 + 2 \cos(\theta) = 1\\ \cos(\theta) = -\dfrac 1 2\\ \theta = \pm \dfrac{2\pi}{3}\)

 

\(\text{So now we can let $a=Me^{i\phi},~b = Me^{i (\phi\pm 2\pi/3)}$}\\ \text{and from the previous result we know $|a+b|=M$} \)

 

\(\dfrac a b = \dfrac{Me^{i\phi}}{Me^{i(\phi \pm 2\pi/3)}} = e^{i\pm 2\pi/3}\\ e^{i2\pi/3}+e^{-i 2\pi/3} = 2\cos\left(\dfrac{2\pi}{3}\right) = -1\)

.
 Jun 29, 2019
edited by Rom  Jun 30, 2019

3 Online Users