Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1253
2
avatar+159 

Let f(x)=(x2+6x+9)504x+3, and let r1,r2,,r100 be the roots of f(x).

Compute (r1+3)100+(r2+3)100++(r100+3)100.

 May 13, 2019

Best Answer 

 #1
avatar+26396 
+2

Let
f(x)=(x2+6x+9)504x+3, and let r1,r2,,r100 be the roots of f(x).
Compute (r1+3)100+(r2+3)100++(r100+3)100.

 

f(x)=(x2+6x+9)504x+3=((x+3)2)504x+3f(x)=(x+3)1004x+3

 

f(r1)=0=(r1+3)1004r1+3f(r2)=0=(r2+3)1004r2+3f(r100)=0=(r100+3)1004r100+3sum0=(r1+3)100+(r2+3)100++(r100+3)1004(r1+r2++r100)+3100

 

(r1+3)100+(r2+3)100++(r100+3)100=4(r1+r2++r100)300

 

vieta:

For any polynomial equation
0=xn+an1·xn1+...+a2·x2+a1·x1+a0
with the solutions r1rn, the relatively simple formulas for a0 and an1 are:

   a0=(1)nnk=1rkan1=nk=1rk

 

(x+3)100=x100+(1001)x993+=x100+300=an1=(r1+r2++r100)x99+

 

(r1+3)100+(r2+3)100++(r100+3)100=4(r1+r2++r100)300r1+r2++r100=300(r1+3)100+(r2+3)100++(r100+3)100=4(300)300(r1+3)100+(r2+3)100++(r100+3)100=1500

 

 

laugh

 May 14, 2019
edited by heureka  May 14, 2019
 #1
avatar+26396 
+2
Best Answer

Let
f(x)=(x2+6x+9)504x+3, and let r1,r2,,r100 be the roots of f(x).
Compute (r1+3)100+(r2+3)100++(r100+3)100.

 

f(x)=(x2+6x+9)504x+3=((x+3)2)504x+3f(x)=(x+3)1004x+3

 

f(r1)=0=(r1+3)1004r1+3f(r2)=0=(r2+3)1004r2+3f(r100)=0=(r100+3)1004r100+3sum0=(r1+3)100+(r2+3)100++(r100+3)1004(r1+r2++r100)+3100

 

(r1+3)100+(r2+3)100++(r100+3)100=4(r1+r2++r100)300

 

vieta:

For any polynomial equation
0=xn+an1·xn1+...+a2·x2+a1·x1+a0
with the solutions r1rn, the relatively simple formulas for a0 and an1 are:

   a0=(1)nnk=1rkan1=nk=1rk

 

(x+3)100=x100+(1001)x993+=x100+300=an1=(r1+r2++r100)x99+

 

(r1+3)100+(r2+3)100++(r100+3)100=4(r1+r2++r100)300r1+r2++r100=300(r1+3)100+(r2+3)100++(r100+3)100=4(300)300(r1+3)100+(r2+3)100++(r100+3)100=1500

 

 

laugh

heureka May 14, 2019
edited by heureka  May 14, 2019
 #2
avatar+159 
0

Thank you i understand but for Vieta's I learned that (-1)^k=(an-k/an) is this the same or sound familiar

 May 16, 2019

3 Online Users

avatar
avatar