Let f(x)=(x2+6x+9)50−4x+3, and let r1,r2,…,r100 be the roots of f(x).
Compute (r1+3)100+(r2+3)100+⋯+(r100+3)100.
Let
f(x)=(x2+6x+9)50−4x+3, and let r1,r2,…,r100 be the roots of f(x).
Compute (r1+3)100+(r2+3)100+⋯+(r100+3)100.
f(x)=(x2+6x+9)50−4x+3=((x+3)2)50−4x+3f(x)=(x+3)100−4x+3
f(r1)=0=(r1+3)100−4r1+3f(r2)=0=(r2+3)100−4r2+3…f(r100)=0=(r100+3)100−4r100+3sum0=(r1+3)100+(r2+3)100+⋯+(r100+3)100−4(r1+r2+…+r100)+3⋅100
(r1+3)100+(r2+3)100+⋯+(r100+3)100=4(r1+r2+…+r100)−300
vieta:
For any polynomial equation
0=xn+an−1·xn−1+...+a2·x2+a1·x1+a0
with the solutions r1…rn, the relatively simple formulas for a0 and an−1 are:
a0=(−1)nn∏k=1rkan−1=−n∑k=1rk
(x+3)100=x100+(1001)x99⋅3+…=x100+300⏟=an−1⏟=−(r1+r2+…+r100)x99+…
(r1+3)100+(r2+3)100+⋯+(r100+3)100=4(r1+r2+…+r100)−300r1+r2+…+r100=−300(r1+3)100+(r2+3)100+⋯+(r100+3)100=4(−300)−300(r1+3)100+(r2+3)100+⋯+(r100+3)100=−1500
Let
f(x)=(x2+6x+9)50−4x+3, and let r1,r2,…,r100 be the roots of f(x).
Compute (r1+3)100+(r2+3)100+⋯+(r100+3)100.
f(x)=(x2+6x+9)50−4x+3=((x+3)2)50−4x+3f(x)=(x+3)100−4x+3
f(r1)=0=(r1+3)100−4r1+3f(r2)=0=(r2+3)100−4r2+3…f(r100)=0=(r100+3)100−4r100+3sum0=(r1+3)100+(r2+3)100+⋯+(r100+3)100−4(r1+r2+…+r100)+3⋅100
(r1+3)100+(r2+3)100+⋯+(r100+3)100=4(r1+r2+…+r100)−300
vieta:
For any polynomial equation
0=xn+an−1·xn−1+...+a2·x2+a1·x1+a0
with the solutions r1…rn, the relatively simple formulas for a0 and an−1 are:
a0=(−1)nn∏k=1rkan−1=−n∑k=1rk
(x+3)100=x100+(1001)x99⋅3+…=x100+300⏟=an−1⏟=−(r1+r2+…+r100)x99+…
(r1+3)100+(r2+3)100+⋯+(r100+3)100=4(r1+r2+…+r100)−300r1+r2+…+r100=−300(r1+3)100+(r2+3)100+⋯+(r100+3)100=4(−300)−300(r1+3)100+(r2+3)100+⋯+(r100+3)100=−1500