+0  
 
0
570
2
avatar

Let \(n\) be a positive integer and let \(k\) be the number of positive integers less than \(2^n\) that are invertible modulo \(2^n\). If \(2^n=3\) (mod 13), then what is the remainder when \(k\) is divided by 13?

 Feb 24, 2021
 #1
avatar
+1

Turns out the answer is 8.

 Feb 24, 2021
 #2
avatar
-1

2^n mod 13 ==3

 

n ==4  and k==15

 

15 mod 13 == 2

 Feb 24, 2021

1 Online Users

avatar