We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
130
1
avatar+85 

Let \(f(n)\) be the base-10 logarithm of the sum of the elements of the \(n\)th row in Pascal's triangle. Express \(\frac{f(n)}{\log_{10} 2}\) in terms of \(n\). Recall that Pascal's triangle begins

1   -> n=0

1     1   -> n=0

1     2     1   -> n=0

1     3     3     1   -> n=0

1     4     6     4     1   -> n=0

...                           ...               

 Feb 24, 2019
 #1
avatar+5224 
+2

\(\text{the }n \text{th row of Pascal's triangle is given by}\\ \left\{\dbinom{n}{k}:k=0,n\right\}\)

 

\(f(n) = \log_{10}\left(\sum \limits_{k=0}^n \dbinom{n}{k}\right) = \log_{10}\left(2^n \right)= n \log_{10}(2)\\ \dfrac{f(n)}{\log_{10}(2)} = n\)

.
 Feb 25, 2019

16 Online Users

avatar