We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
651
1
avatar+1438 

Let \(\mathcal{R} \) denote the circular region bounded by x^2 + y^2 = 36. The lines x = 4 and y = 3 partition \(\mathcal{R} \) into four regions \(\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, and \mathcal{R}_4\). Let \([\mathcal{R}_i]\) denote the area of region \(\mathcal{R}_i\). If \([\mathcal{R}_1] > [\mathcal{R}_2] > [\mathcal{R}_3] > [\mathcal{R}_4] \), then compute \([\mathcal{R}_1] - [\mathcal{R}_2] - [\mathcal{R}_3] + [\mathcal{R}_4]\).

 

Thanks!

 #1
avatar+23048 
+1

Let \(\mathcal{R}\) denote the circular region bounded by x^2 + y^2 = 36.
The lines x = 4 and y = 3 partition \(\mathcal{R}\) into four regions \(\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \text{ and } \mathcal{R}_4\).
Let \([\mathcal{R}_i]\) denote the area of region\( \mathcal{R}_i\).
If \([\mathcal{R}_1] > [\mathcal{R}_2] > [\mathcal{R}_3] > [\mathcal{R}_4]\), then compute \([\mathcal{R}_1] - [\mathcal{R}_2] - [\mathcal{R}_3] + [\mathcal{R}_4]\).

 

\(\text{Let $ \mathcal{R}_1 = \mathcal{R}_{11} + \mathcal{R}_{12} + \mathcal{R}_{13} + \mathcal{R}_{14} $ } \\ \text{Let $ \mathcal{R}_2 = \mathcal{R}_{21} + \mathcal{R}_{22} $ } \\ \text{Let $(1)\qquad \mathcal{R}_2 = \mathcal{R}_{13} + \mathcal{R}_{14} $ } \\ \text{Let $(2)\qquad \mathcal{R}_3 = \mathcal{R}_{12} + \mathcal{R}_{13} $ } \\ \text{Let $(3)\qquad \mathcal{R}_4 = \mathcal{R}_{21} $ } \\ \\ \text{Let $(4)\qquad \mathcal{R}_{13} = \mathcal{R}_{21} $ } \\ \text{Let $(5)\qquad \mathcal{R}_{1} -\mathcal{R}_{13}-\mathcal{R}_{14} = \mathcal{R}_{12} + \mathcal{R}_{11} $ }\)

 

\(\begin{array}{|rcll|} \hline [\mathcal{R}_1] - [\mathcal{R}_2] - [\mathcal{R}_3] + [\mathcal{R}_4] &=& ([\mathcal{R}_1] - \underbrace{[\mathcal{R}_2])}_{= [\mathcal{R}_{13}] + [\mathcal{R}_{14}]} - (\underbrace{[\mathcal{R}_3]}_{=[\mathcal{R}_{12}] + [\mathcal{R}_{13}] } - \underbrace{[\mathcal{R}_4]}_{=[\mathcal{R}_{21}] } ) \\\\ &=& ( \underbrace{[\mathcal{R}_1] - [\mathcal{R}_{13}] - [\mathcal{R}_{14}]}_{=[\mathcal{R}_{12}] + [\mathcal{R}_{11}] } ) -( [\mathcal{R}_{12}] + \underbrace{[\mathcal{R}_{13}]}_{=[\mathcal{R}_{21}]} - [\mathcal{R}_{21}] ) \\ \\ &=& ( [\mathcal{R}_{12}] + [\mathcal{R}_{11}] ) -( [\mathcal{R}_{12}] + [\mathcal{R}_{21}] - [\mathcal{R}_{21}] ) \\ \\ &=& ( [\mathcal{R}_{12}] + [\mathcal{R}_{11}] ) -[\mathcal{R}_{12}] \\ \\ &=& [\mathcal{R}_{11}] \\ \\ &=& 8 \times 6 \\ \\ &\mathbf{=}& \mathbf{ 48 } \\ \hline \end{array}\)

 

This last region is simply a rectangle of height 6 and width 8, so its area is 48.

 

Source: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjoxuXK74ncAhVNr6QKHcfOByQQFgg3MAE&url=https%3A%2F%2Fservices.artofproblemsolving.com%2Fdownload.php%3Fid%3DYXR0YWNobWVudHMvYi84LzAwNWQ1ZDMzMmNlZmNhMmRiM2Q3YTg2YmVhZDE5NjFmYmIwYjUz%26rn%3DMjAxMGNvbnRlc3RlbnRpcmVkcmFmdHYxLjQucGRm&usg=AOvVaw3xDrFBFJINmMsnAYS_3zde

 

 

laugh

 Jul 6, 2018
edited by heureka  Jul 6, 2018

14 Online Users