Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+3
1243
1
avatar

Let \displaystyle f(x) = \frac{1}{x-3} and \displaystyle g(x) = \frac{1}{x-7}. Then the domain of f\circ g is equal to all reals except for two values, a and b with a

 Sep 15, 2014

Best Answer 

 #1
avatar+118703 
+13

Let \displaystyle f(x) = \frac{1}{x-3} and \displaystyle g(x) = \frac{1}{x-7}. Then the domain of f\circ g is equal to all reals except for two values, a and b with a

 

Letf(x)=1x3andg(x)=1x7.Then the domain of fg is equal to all reals except for two values, a and b with a 

 

fg=11x73=113(x7)x7=13x+22x7=1÷3x+22x7=1×x73x+22=x7223x

 

NOW     x cannot equal to 7 or 22/3  because you cannot divide by zero!

xRwherex7andx223

 Sep 16, 2014
 #1
avatar+118703 
+13
Best Answer

Let \displaystyle f(x) = \frac{1}{x-3} and \displaystyle g(x) = \frac{1}{x-7}. Then the domain of f\circ g is equal to all reals except for two values, a and b with a

 

Letf(x)=1x3andg(x)=1x7.Then the domain of fg is equal to all reals except for two values, a and b with a 

 

fg=11x73=113(x7)x7=13x+22x7=1÷3x+22x7=1×x73x+22=x7223x

 

NOW     x cannot equal to 7 or 22/3  because you cannot divide by zero!

xRwherex7andx223

Melody Sep 16, 2014

1 Online Users

avatar