We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
524
1
avatar+644 

Let f be the piecewise function such that
\( f(x) = \begin{cases} x^2 - 5x - 64, & x \le 0 \\ x^2 + 3x - 38, & x > 0 \end{cases}\)
At how many points x does f(x) = 2?

 Mar 15, 2018
 #1
avatar+100571 
+1

For the first function

x^2 - 5x - 64  =2

x^2 - 5x -66 = 0    factor

(x - 11)  ( x + 6)  = 0

The only solution  for the first restriction  is  x  = -6  ⇒ (-6, 2)

 

For the second function

x^2 + 3x - 38  = 2

x^2 + 3x - 40  =0\

(x + 8) ( x - 5)  = 0

The only solution for the second restriction is  x = 5 ⇒  (5 , 2)

 

So....two points

 

 

 

cool cool cool

 Mar 15, 2018

13 Online Users