+0  
 
0
174
1
avatar+644 

Let f be the piecewise function such that
\( f(x) = \begin{cases} x^2 - 5x - 64, & x \le 0 \\ x^2 + 3x - 38, & x > 0 \end{cases}\)
At how many points x does f(x) = 2?

waffles  Mar 15, 2018
 #1
avatar+87600 
+1

For the first function

x^2 - 5x - 64  =2

x^2 - 5x -66 = 0    factor

(x - 11)  ( x + 6)  = 0

The only solution  for the first restriction  is  x  = -6  ⇒ (-6, 2)

 

For the second function

x^2 + 3x - 38  = 2

x^2 + 3x - 40  =0\

(x + 8) ( x - 5)  = 0

The only solution for the second restriction is  x = 5 ⇒  (5 , 2)

 

So....two points

 

 

 

cool cool cool

CPhill  Mar 15, 2018

13 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.