+0  
 
0
402
1
avatar+272 

Let f(x)= (3x-7)/(x+1).

 

find the inverse of f^-1(x)

 

thanks :D

WhichWitchIsWhich  Nov 6, 2017

Best Answer 

 #1
avatar+7164 
+1

f(x)  =  \(\frac{3x-7}{x+1}\)                    Let's say...

 

y  =  \(\frac{3x-7}{x+1}\)                               Now we want to solve for  x .

                                                Multiply both sides of the equation by  x + 1 .

y(x + 1)  =  3x - 7

                                                Distribute the  y .

yx + y  =  3x - 7

                                                Subtract  3x  from both sides.

yx - 3x +  y  =  -7

                                                Factor  x  out of the first two terms.

x(y - 3) + y  =  -7

                                                Subtract  y  from both sides.

x(y - 3)  =  -y - 7

                                                Divide both sides by  y - 3 .

x  =  \(\frac{-y-7}{y-3}\)

                                      Now to get the inverse, swap  x  and  y .

y  =  \(\frac{-x-7}{x-3}\)                    This is the inverse function.

 

f-1(x)  =  \(\frac{-x-7}{x-3}\)

hectictar  Nov 6, 2017
 #1
avatar+7164 
+1
Best Answer

f(x)  =  \(\frac{3x-7}{x+1}\)                    Let's say...

 

y  =  \(\frac{3x-7}{x+1}\)                               Now we want to solve for  x .

                                                Multiply both sides of the equation by  x + 1 .

y(x + 1)  =  3x - 7

                                                Distribute the  y .

yx + y  =  3x - 7

                                                Subtract  3x  from both sides.

yx - 3x +  y  =  -7

                                                Factor  x  out of the first two terms.

x(y - 3) + y  =  -7

                                                Subtract  y  from both sides.

x(y - 3)  =  -y - 7

                                                Divide both sides by  y - 3 .

x  =  \(\frac{-y-7}{y-3}\)

                                      Now to get the inverse, swap  x  and  y .

y  =  \(\frac{-x-7}{x-3}\)                    This is the inverse function.

 

f-1(x)  =  \(\frac{-x-7}{x-3}\)

hectictar  Nov 6, 2017

5 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.