+0  
 
0
322
1
avatar+272 

Let f(x) = 5x+3 and g(x)=x^2-2. What is g(f(-1))? 

 

and

 

If f(x)=16/(5+3x), what is the value of [f^-1(2)]^-2?

 

Thanks :D

 Nov 4, 2017

Best Answer 

 #1
avatar+97561 
+2

Let f(x) = 5x+3 and g(x)=x^2-2. What is g(f(-1))? 

 

\(f(x)=5x+3\\ f(-1)=5*-1+3=-2\\~\\ g(x)=x^2-2\\ g(f(-1))=g(-2)=(-2)^2-2=2\)

 

 

and

 

If f(x)=16/(5+3x), what is the value of [f^-1(2)]^-2?

 

\(f(x)=\frac{16}{5+3x}\\ let\;\; y=\frac{16}{5+3x} \qquad x\ne-\frac{5}{3}\\ 5y+3yx=16\\ 3yx=16-5y\\ x=\frac{16-5y}{3y}\\ f^{-1}(x)=\frac{16-5x}{3x}\qquad x\ne0\\ f^{-1}(2)=\frac{16-5*2}{3*2}\\ f^{-1}(2)=\frac{6}{6}\\ f^{-1}(2)=1\\ [f^{-1}(2)]^{-2}=1\\ \)

 

Here is a graph:

 

https://www.desmos.com/calculator/vc8o90j6i4

 Nov 4, 2017
 #1
avatar+97561 
+2
Best Answer

Let f(x) = 5x+3 and g(x)=x^2-2. What is g(f(-1))? 

 

\(f(x)=5x+3\\ f(-1)=5*-1+3=-2\\~\\ g(x)=x^2-2\\ g(f(-1))=g(-2)=(-2)^2-2=2\)

 

 

and

 

If f(x)=16/(5+3x), what is the value of [f^-1(2)]^-2?

 

\(f(x)=\frac{16}{5+3x}\\ let\;\; y=\frac{16}{5+3x} \qquad x\ne-\frac{5}{3}\\ 5y+3yx=16\\ 3yx=16-5y\\ x=\frac{16-5y}{3y}\\ f^{-1}(x)=\frac{16-5x}{3x}\qquad x\ne0\\ f^{-1}(2)=\frac{16-5*2}{3*2}\\ f^{-1}(2)=\frac{6}{6}\\ f^{-1}(2)=1\\ [f^{-1}(2)]^{-2}=1\\ \)

 

Here is a graph:

 

https://www.desmos.com/calculator/vc8o90j6i4

Melody Nov 4, 2017

40 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.