+0

Let f(x) = 5x+3 and g(x)=x^2-2. What is g(f(-1))?

0
127
1
+272

Let f(x) = 5x+3 and g(x)=x^2-2. What is g(f(-1))?

and

If f(x)=16/(5+3x), what is the value of [f^-1(2)]^-2?

Thanks :D

WhichWitchIsWhich  Nov 4, 2017

#1
+91786
+2

Let f(x) = 5x+3 and g(x)=x^2-2. What is g(f(-1))?

$$f(x)=5x+3\\ f(-1)=5*-1+3=-2\\~\\ g(x)=x^2-2\\ g(f(-1))=g(-2)=(-2)^2-2=2$$

and

If f(x)=16/(5+3x), what is the value of [f^-1(2)]^-2?

$$f(x)=\frac{16}{5+3x}\\ let\;\; y=\frac{16}{5+3x} \qquad x\ne-\frac{5}{3}\\ 5y+3yx=16\\ 3yx=16-5y\\ x=\frac{16-5y}{3y}\\ f^{-1}(x)=\frac{16-5x}{3x}\qquad x\ne0\\ f^{-1}(2)=\frac{16-5*2}{3*2}\\ f^{-1}(2)=\frac{6}{6}\\ f^{-1}(2)=1\\ [f^{-1}(2)]^{-2}=1\\$$

Here is a graph:

https://www.desmos.com/calculator/vc8o90j6i4

Melody  Nov 4, 2017
Sort:

#1
+91786
+2

Let f(x) = 5x+3 and g(x)=x^2-2. What is g(f(-1))?

$$f(x)=5x+3\\ f(-1)=5*-1+3=-2\\~\\ g(x)=x^2-2\\ g(f(-1))=g(-2)=(-2)^2-2=2$$

and

If f(x)=16/(5+3x), what is the value of [f^-1(2)]^-2?

$$f(x)=\frac{16}{5+3x}\\ let\;\; y=\frac{16}{5+3x} \qquad x\ne-\frac{5}{3}\\ 5y+3yx=16\\ 3yx=16-5y\\ x=\frac{16-5y}{3y}\\ f^{-1}(x)=\frac{16-5x}{3x}\qquad x\ne0\\ f^{-1}(2)=\frac{16-5*2}{3*2}\\ f^{-1}(2)=\frac{6}{6}\\ f^{-1}(2)=1\\ [f^{-1}(2)]^{-2}=1\\$$

Here is a graph:

https://www.desmos.com/calculator/vc8o90j6i4

Melody  Nov 4, 2017

21 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details