+0  
 
0
56
1
avatar+300 

Let

\(f(x) = \begin{cases} 2x^2 - 3&\text{if } x\le 2, \\ ax + 4 &\text{if } x>2. \end{cases} \)

Find a if the graph of \(y=f(x)\) is continuous (which means the graph can be drawn without lifting your pencil from the paper).

RektTheNoob  Feb 2, 2018
Sort: 

1+0 Answers

 #1
avatar+82863 
+3

We want to first solve this  for a

 

a(2) + 4  =  2(2)^2 - 3     simplify

 

2a + 4  =  8 - 3

 

2a + 4  =  5     subtract 4 from both sides

 

2a  = 1     divide both sides by 2

 

a  = 1/2

 

Here is the graph :  https://www.desmos.com/calculator/6oknzzh6sz

 

 

cool cool cool

CPhill  Feb 2, 2018

8 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details