+0  
 
+1
2750
1
avatar+489 

Let

\(f(x) = \begin{cases} 2x^2 - 3&\text{if } x\le 2, \\ ax + 4 &\text{if } x>2. \end{cases} \)

Find a if the graph of \(y=f(x)\) is continuous (which means the graph can be drawn without lifting your pencil from the paper).

 Feb 2, 2018
 #1
avatar+129933 
+2

We want to first solve this  for a

 

a(2) + 4  =  2(2)^2 - 3     simplify

 

2a + 4  =  8 - 3

 

2a + 4  =  5     subtract 4 from both sides

 

2a  = 1     divide both sides by 2

 

a  = 1/2

 

Here is the graph :  https://www.desmos.com/calculator/6oknzzh6sz

 

 

cool cool cool

 Feb 2, 2018

2 Online Users

avatar
avatar