+0  
 
+1
280
1
avatar+454 

Let

\(f(x) = \begin{cases} 2x^2 - 3&\text{if } x\le 2, \\ ax + 4 &\text{if } x>2. \end{cases} \)

Find a if the graph of \(y=f(x)\) is continuous (which means the graph can be drawn without lifting your pencil from the paper).

RektTheNoob  Feb 2, 2018
 #1
avatar+92808 
+3

We want to first solve this  for a

 

a(2) + 4  =  2(2)^2 - 3     simplify

 

2a + 4  =  8 - 3

 

2a + 4  =  5     subtract 4 from both sides

 

2a  = 1     divide both sides by 2

 

a  = 1/2

 

Here is the graph :  https://www.desmos.com/calculator/6oknzzh6sz

 

 

cool cool cool

CPhill  Feb 2, 2018

4 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.