We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
474
1
avatar+474 

Let

\(f(x) = \begin{cases} 2x^2 - 3&\text{if } x\le 2, \\ ax + 4 &\text{if } x>2. \end{cases} \)

Find a if the graph of \(y=f(x)\) is continuous (which means the graph can be drawn without lifting your pencil from the paper).

 Feb 2, 2018
 #1
avatar+100483 
+3

We want to first solve this  for a

 

a(2) + 4  =  2(2)^2 - 3     simplify

 

2a + 4  =  8 - 3

 

2a + 4  =  5     subtract 4 from both sides

 

2a  = 1     divide both sides by 2

 

a  = 1/2

 

Here is the graph :  https://www.desmos.com/calculator/6oknzzh6sz

 

 

cool cool cool

 Feb 2, 2018

9 Online Users

avatar
avatar
avatar