+0  
 
0
57
1
avatar

Let $$h(x) = f(g(x)).$$ Note that $f(x)$ and $g(x)$ are not necessarily polynomials. State for each of the following cases whether $h(x)$ is even, odd, or neither.

 

a) $f(x)$ and $g(x)$ are both even.

b) $f(x)$ and $g(x)$ are both odd.

c) $f(x)$ is even and $g(x)$ is odd.

d) $f(x)$ is odd and $g(x)$ is even.

Guest Apr 3, 2018
Sort: 

1+0 Answers

 #1
avatar+333 
+3

a) If both f and g are even, then \(h(x)=f(g(x))=f(g(-x))=h(-x)\)EVEN

b) If both and are odd, then \(h(-x)=f(g(-x))=f(-g(x))=-f(g(x))=-(h(x))\)ODD

c) If f is even and g is odd, then \(h(-x)=f(g(-x))=f(-g(x))=f(g(x))=h(x)\)EVEN

d) If f is odd and g is even, then \(h(x)=f(g(x))=f(g(-x))=h(-x)\)EVEN

 

smiley

Mathhemathh  Apr 3, 2018

28 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details