+0  
 
0
1034
1
avatar+4622 

Let \(f(x) = \left\{ \begin{array}{cl} \frac{x}{21} & \text{ if }x\text{ is a multiple of 3 and 7}, \\ 3x & \text{ if }x\text{ is only a multiple of 7}, \\ 7x & \text{ if }x\text{ is only a multiple of 3}, \\ x+3 & \text{ if }x\text{ is not a multiple of 3 or 7}. \end{array} \right.\) If \(f^a(x)\)  means the function is nested \(a\)  times (for example, \(f^2(x)=f(f(x))\)  ), what is the smallest value of a greater than 1 that satisfies \(f(2)=f^a(2)\)  ?

 May 29, 2017
 #1
avatar
+1

you can plug in 2 and try evaluating the function a few times

eventually you will come across the answer.

 

here's what i got

 

f(2)=5

 

a=1, x=5

2  8(+3)

3  11(+3)

4  14(+3)

5  42(x7)

6  2(/21)

7  5(+3)

 

so now we are back at 5 after 7 tries

 Feb 13, 2020

0 Online Users