We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
91
1
avatar

Let A be a matrix, and let x and y be linearly independent vectors such that

\(\mathbf{A} \mathbf{x} = \mathbf{y}, \mathbf{A} \mathbf{y} = \mathbf{x} + 2\mathbf{y}\)

Then we have that

\(\mathbf{A}^{-1} \mathbf{x} = a \mathbf{x} + b\mathbf{y}\)
for some scalars a and b. Find the ordered pair (a,b).

 Mar 1, 2019
 #1
avatar+22186 
+2

Let \(\mathbf{A}\) be a matrix, and let \(\mathbf{x}\) and \(\mathbf{y}\) be linearly independent vectors such that
\(\mathbf{A} \mathbf{x} = \mathbf{y}, \mathbf{A} \mathbf{y} = \mathbf{x} + 2\mathbf{y}\)
Then we have that
\(\mathbf{A}^{-1} \mathbf{x} = a \mathbf{x} + b\mathbf{y}\)
or some scalars a and b.

Find the ordered pair (a,b).

 

\(\begin{array}{|rcll|} \hline Ax &=& y \quad | \quad \cdot A^{-1} \\ A^{-1}Ax &=& A^{-1}y \quad | \quad A^{-1}A = I \\ x &=& A^{-1}y \\ \mathbf{A^{-1}y} &\mathbf{=}&\mathbf{x} \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline Ay &=& x + 2y \quad | \quad \cdot A^{-1} \\ A^{-1}Ay &=& A^{-1}x + 2A^{-1}y \quad | \quad A^{-1}A = I \\ y &=& A^{-1}x + 2A^{-1}y \quad | \quad \mathbf{A^{-1}y=x} \\ y &=& A^{-1}x + 2x \\ \mathbf{A^{-1}x} &\mathbf{=}&\mathbf{-2x+y } \\ \hline \end{array}\)


\(\mathbf{(a,b) = (-2,1)}\)

 

laugh

 Mar 1, 2019

7 Online Users

avatar
avatar