+0  
 
0
146
1
avatar+199 

Let $n$ be the inverse of $2\pmod{17}$.

 

That is, let $n$ be the integer $0\leq n < 17$ for which $2n \equiv 1 \pmod{17}$. What is $\left(2^n\right)^2 - 2 \pmod{17}$? Express your answer as an integer from $0$ to $16$, inclusive.

Rollingblade  May 17, 2018
 #1
avatar+20153 
+1

Let $n$ be the inverse of $2\pmod{17}$.

That is, let $n$ be the integer $0\leq n < 17$ for which $2n \equiv 1 \pmod{17}$.
What is $\left(2^n\right)^2 - 2 \pmod{17}$? Express your answer as an integer from $0$ to $16$, inclusive.

 

\(\begin{array}{|rcll|} \hline 2n &\equiv& 1 \pmod {17} \quad & | \quad : 2 \\\\ n &\equiv& \frac12 \pmod {17} \\ \mathbf{n} &\mathbf{\equiv}& \mathbf{ 2^{-1} \pmod {17}} \\ \hline \end{array} \)

 

\(\text{ Solve $2^{-1} \pmod {17}$ }\)

\(\text{Because gcd(2,17)=1 we can continue.}\)

\(\begin{array}{|rcll|} \hline 2^{-1} \pmod {17} &\equiv& 2^{\varphi(17)-1} \pmod {17} \quad & | \quad \varphi(p) = p - 1 \quad \text{$p$ is a prime number} \\\\ && \varphi(17) = 16 \\\\ &\equiv& 2^{16-1} \pmod {17} \\ &\equiv& 2^{15} \pmod {17} \\ &\equiv& 32768 \pmod {17} \\ 2^{-1} \pmod {17}&\equiv& 9 \pmod {17} \\ \mathbf{n} &\mathbf{=}& \mathbf{9} \\ \hline \end{array} \)

 

\(Proof:\\ 2\cdot 9 \equiv 1 \pmod{17} \ \checkmark \)

 

\(\begin{array}{|rcll|} \hline && (2^n)^2 - 2 \pmod{17} \quad & | \quad n = 9 \\ &\equiv& (2^9)^2 - 2 \pmod{17} \\ &\equiv& 2^{18} - 2 \pmod{17} \\ &\equiv& 262144- 2 \pmod{17} \\ &\equiv& 262142 \pmod{17} \\ &\equiv& 2 \pmod{17} \\ \hline \end{array} \)

 

\(\begin{array}{rcll} \mathbf{(2^n)^2 - 2 \pmod{17}} &\mathbf{=}& \mathbf{ 2} \\ \end{array}\)

 

laugh

heureka  May 18, 2018

13 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.