Let , , . . . , be an arithmetic sequence. If and , then find .
Subtracting the second sum from the first, we have
(a2 - a1) + (a4 - a3) + (a6 - a5) + (a8 - a7) + (a10 - a9) = -2 or
d + d + d + d + d = -2 or
5d = -2 → d = -2/5
Also, the sum of the arithmetic series is given by
S = (10/2)(a1 + a10) = 5(a1 + a10) = 32 divide both sides by 5
So
a1 + a10 = 32/5 → a10 = 32/5 - a1 ( 1)
And the last term is given by
a10 = a1 + d(9) (2)
Therefore, setting (1) = (2), we have
32/5 - a1 = a1 + d(9) ... solve for a1
(32/5 -2a1) = d(9)
32/5 -2a1 = (-2/5)(9) = -18/5
32/5 + 18/5 = 2a1
2a1 = 50/5
a1 = 5
And a10= 32/5 - a1 = 32/5 - 5 = 1.4
Proof
a1 + a3 + a5 + a7 + a9 = 5 + 4.2 + 3.4 + 2.6 + 1.8 = 17
And since each of the other 5 terms is (2/5) less than it's preceding term.....
[17 - 5(2/5)] = [17 - 2] = 15 = the sum of the terms with even subscripts
Let , , . . . , be an arithmetic sequence. If and , then find .
Subtracting the second sum from the first, we have
(a2 - a1) + (a4 - a3) + (a6 - a5) + (a8 - a7) + (a10 - a9) = -2 or
d + d + d + d + d = -2 or
5d = -2 → d = -2/5
Also, the sum of the arithmetic series is given by
S = (10/2)(a1 + a10) = 5(a1 + a10) = 32 divide both sides by 5
So
a1 + a10 = 32/5 → a10 = 32/5 - a1 ( 1)
And the last term is given by
a10 = a1 + d(9) (2)
Therefore, setting (1) = (2), we have
32/5 - a1 = a1 + d(9) ... solve for a1
(32/5 -2a1) = d(9)
32/5 -2a1 = (-2/5)(9) = -18/5
32/5 + 18/5 = 2a1
2a1 = 50/5
a1 = 5
And a10= 32/5 - a1 = 32/5 - 5 = 1.4
Proof
a1 + a3 + a5 + a7 + a9 = 5 + 4.2 + 3.4 + 2.6 + 1.8 = 17
And since each of the other 5 terms is (2/5) less than it's preceding term.....
[17 - 5(2/5)] = [17 - 2] = 15 = the sum of the terms with even subscripts
Original sequence a=a1 d=d
$$S_n=\frac{n}{2}[2a+(n-1)d]\qquad $This is the sum of an AP$$$
$$\\a_1+a_3+a_5+a_7+a_9=17\\
$$\\\frac{5}{2}[2a_1+(5-1)*2d]=17\\\\ | $$\\a_2+a_4+a_6+a_8+a_{10}=15\\ n=5,\quad a=a_1+d, \quad newd=2d\\$$
$$\\\frac{5}{2}[2(a_1+d)+(5-1)*2d]=15\\\\
|
Solve simultaneously
(2)-(1)
d=3-17/5 = -2/5
sub into (2)
a1+5(-2/5)=3
a1-2=3
a1=5
Let , , . . . , be an arithmetic sequence. If
1. arithmetic sequence: $$\small{\text{
$
a_1, a_2,a_3,a_4,a_5,a_6,a_7,a_8,a_9,a_{10}
$
}}$\\$
\small{\text{
$
a_n=a_1+(n-1)*d $ and
$
s_n= \frac{n}{2}*[2a_1*(n-1)d]
$
}}
\small{\text{
$
\Rightarrow s_{10}= 17+15 = \frac{10}{2}*[2a_1+(10-1)d]
$
}} $\\$
\small{\text{
$
32 = 5*(2a_1+9d)
$
}} $\\$
\small{\text{
$
\textcolor[rgb]{0,0,1}{(1) \quad 32 = 10a_1+45d}
$
}}$$
2. arithmetic sequence:
$$\small{\text{
$
a_1,a_3,a_5,a_7,a_9$
}}$\\$
\small{\text{
$
a_i=a_1+(i-1)*(2d) $ and
$
s_i= \frac{i}{2}*[2a_1*(i-1)(2d)]
$
}}
\small{\text{
$
\Rightarrow s_5= 17 = \frac{5}{2}*[2a_1+(5-1)(2d)]
$
}} $\\$
\small{\text{
$
2*17 = 5*(2a_1+8d)
$
}} $\\$
\small{\text{
$
\textcolor[rgb]{0,0,1}{(2) \quad 34 = 10a_1+40d}
$
}}$$
$$\small{\text{
(1) - (2):
$\quad
32-34 = 10a_1-10a_1 + 45d-40d = 5d \qquad -2=5d \qquad \boxed{d = -\frac{2}{5}}
$
}}$$
$$\small{\text{
d into (2):
$
\quad
34 = 10a_1+40*(-\frac{2}{5}) = 10a_1 - 16 \qquad 10a_1 = 50 \qquad \boxed{a_1 =5 }
$
}}$$