Let $\omega$ be a complex number such that $\omega^7 = 1$ and $\omega \neq 1$. Let $\alpha = \omega + \omega^2 + \omega^4$ and $\beta = \omega^3 + \omega^5 + \omega^6$. Then $\alpha$ and $\beta$ are roots of the quadratic x2+px+q=0for some integers $p$ and $q$. Find the ordered pair $(p,q)$.