Let Q(x)=x^2+bx+c, where b and c are integers. If Q((1+sqrt(2)^8)=0, determine b+c
Your question isn't clear; you entered Q((1 + sqrt(2)8) = 0.
There are 3 left-parantheses but only 2 right-parantheses.
I'm going to change the expression to: Q( ( 1 + sqrt(2) )8 ) = 0.
If Q(x) = x2 + bx + c:
( 1 + sqrt(2) )8 = 577 + 408sqrt(2)
---> Q( ( 1 + sqrt(2) )8 ) = Q( 577 + 408sqrt(2) ) = ( 577 + 408sqrt(2) )2 + ( 577 + 408sqrt(2) )b + c = 0
( 577 + 408sqrt(2) )2 = 665857 + 470832sqrt(2)
---> ( 577 + 408sqrt(2) )2 + ( 577 + 408sqrt(2) )b + c = 0
---> 665857 + 470832sqrt(2) + 577b + 408sqrt(2)b + c = 0
Separate this into two equations, one have square roots, the other without:
---> 665857 + 577b + c = 0 and 470832sqrt(2) + 408sqrt(2)b = 0
408sqrt(2)b = -470832sqrt(2)
b = -1154
When b = -1154: 665857 + 577b + c = 0
665857 + 577(-1154) + c = 0
665857 - 665858 + c = 0
-1 + c = 0
c = 1
b + c = -1154 + 1 = -1153
Your question isn't clear; you entered Q((1 + sqrt(2)8) = 0.
There are 3 left-parantheses but only 2 right-parantheses.
I'm going to change the expression to: Q( ( 1 + sqrt(2) )8 ) = 0.
If Q(x) = x2 + bx + c:
( 1 + sqrt(2) )8 = 577 + 408sqrt(2)
---> Q( ( 1 + sqrt(2) )8 ) = Q( 577 + 408sqrt(2) ) = ( 577 + 408sqrt(2) )2 + ( 577 + 408sqrt(2) )b + c = 0
( 577 + 408sqrt(2) )2 = 665857 + 470832sqrt(2)
---> ( 577 + 408sqrt(2) )2 + ( 577 + 408sqrt(2) )b + c = 0
---> 665857 + 470832sqrt(2) + 577b + 408sqrt(2)b + c = 0
Separate this into two equations, one have square roots, the other without:
---> 665857 + 577b + c = 0 and 470832sqrt(2) + 408sqrt(2)b = 0
408sqrt(2)b = -470832sqrt(2)
b = -1154
When b = -1154: 665857 + 577b + c = 0
665857 + 577(-1154) + c = 0
665857 - 665858 + c = 0
-1 + c = 0
c = 1
b + c = -1154 + 1 = -1153