We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
212
2
avatar

Let \(\theta\) be the angle between a and b, where a and b are the vectors defined in \(a = \begin{pmatrix} 2 \\ -6 \\ 5 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix}\). Find \(\cos^2 \theta\).

 Feb 28, 2019

Best Answer 

 #1
avatar+23321 
+3

Let \(\theta\) be the angle between a and b, where a and b are the vectors defined in

 

\(a = \begin{pmatrix} 2 \\ -6 \\ 5 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix}\).
 

Find \(\cos^2 \theta\)

 

\(\begin{array}{|rcll|} \hline \mathbf{\cos(\theta)} &\mathbf{=}& \mathbf{\dfrac{\vec{a}\cdot \vec{b}}{|\vec{a}|\cdot |\vec{b}|} } \quad | \quad |\vec{a}| = \sqrt{2^2+(-6)^2+5^2}=\sqrt{65},\ |\vec{b}| = \sqrt{(-1)^2+(-2)^2+0^2}=\sqrt{5} \\\\ \cos(\theta) &=& \dfrac{\begin{pmatrix} 2 \\ -6 \\ 5 \end{pmatrix}\cdot \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix} } {\sqrt{65}\cdot \sqrt{5} } \\\\ \cos(\theta) &=& \dfrac{2\cdot (-1)+(-6)\cdot(-2)+5\cdot 0} {\sqrt{65}\cdot \sqrt{5} } \\\\ \cos(\theta) &=& \dfrac{10} {\sqrt{65}\cdot \sqrt{5} } \\\\ \cos^2(\theta) &=& \dfrac{100} {65\cdot 5 } \\\\ \cos^2(\theta) &=& \dfrac{100} {325 } \\\\ \mathbf{\cos^2(\theta)} &\mathbf{=}& \mathbf{\dfrac{4}{13}} \\ \hline \end{array}\)

 

laugh

 Feb 28, 2019
 #1
avatar+23321 
+3
Best Answer

Let \(\theta\) be the angle between a and b, where a and b are the vectors defined in

 

\(a = \begin{pmatrix} 2 \\ -6 \\ 5 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix}\).
 

Find \(\cos^2 \theta\)

 

\(\begin{array}{|rcll|} \hline \mathbf{\cos(\theta)} &\mathbf{=}& \mathbf{\dfrac{\vec{a}\cdot \vec{b}}{|\vec{a}|\cdot |\vec{b}|} } \quad | \quad |\vec{a}| = \sqrt{2^2+(-6)^2+5^2}=\sqrt{65},\ |\vec{b}| = \sqrt{(-1)^2+(-2)^2+0^2}=\sqrt{5} \\\\ \cos(\theta) &=& \dfrac{\begin{pmatrix} 2 \\ -6 \\ 5 \end{pmatrix}\cdot \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix} } {\sqrt{65}\cdot \sqrt{5} } \\\\ \cos(\theta) &=& \dfrac{2\cdot (-1)+(-6)\cdot(-2)+5\cdot 0} {\sqrt{65}\cdot \sqrt{5} } \\\\ \cos(\theta) &=& \dfrac{10} {\sqrt{65}\cdot \sqrt{5} } \\\\ \cos^2(\theta) &=& \dfrac{100} {65\cdot 5 } \\\\ \cos^2(\theta) &=& \dfrac{100} {325 } \\\\ \mathbf{\cos^2(\theta)} &\mathbf{=}& \mathbf{\dfrac{4}{13}} \\ \hline \end{array}\)

 

laugh

heureka Feb 28, 2019

30 Online Users