Let x = 2012(a - b), y = 2012(b - c) and z = 2012(c - a) where a,b,c are real numbers, and assume xy + yz + zx ≠ 0. Compute {x^2 + y^2 + z^2}/{xy + yz + zx}
x^2 = 2012^2(a - b)^2
y^2 = 2012^2 (b - c)^2
z^2 = 2012^2 (c - a)^2
xy = 2012^2(a - b) (b - c)
yz = 2012^2 (b -c) (c - a)
xz = 2012^2 (a - b)(c - a)
So
{x^2 + y^2 + z^2}/{xy + yz + zx} =
[ 2012^2 [ ( a- b)^2 + (b - c)^2 + ( c - a)^2 ] ]/ [ 2012^2 [ (a-b)(b -c) +(b -c)(c - a) +(a -b) (c-a)] ]
[ ( a - b)^2 + (b - c)^2 + (c - a)^2) ] / [ (b - c) ( a - b + c - a) + (a - b)(c - a) ]
[ ( a - b)^2 + (b - c)^2 + (c - a)^2 ] / [ (b -c) (c - b) + ( a - b)(c - a) ]
[ a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + c^2 - 2ac + a^2] / [ - ( b - c)^2 + (a - b)(c - a)]
[ 2 [ a^2 + b^2 + c^2] - 2 [ ab + bc + ac ] ]/ [ -b^2 + 2bc - c^2 + ac - bc - a^2 + ab ]
[ 2 [ a^2 + b^2 + c^2] - 2 [ ab + bc + ac] ] / [ - [ a^2 + b^2 + c^2] + [ ab + bc + ac] ]
[ 2 [ a^2 + b^2 + c^2 - ab - bc - ac ] ] / [ - 1 [ a^2 + b^2 + c^2 - ab + bc + ac ] ]
=
2 / -1 =
-2