We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
497
1
avatar+644 

Let x = 2012(a - b), y = 2012(b - c) and z = 2012(c - a) where a,b,c are real numbers, and assume xy + yz + zx  ≠ 0. Compute {x^2 + y^2 + z^2}/{xy + yz + zx}

 Jan 25, 2018
 #1
avatar+102372 
+1

x^2  =  2012^2(a - b)^2 

y^2 =  2012^2 (b - c)^2

z^2 =  2012^2 (c - a)^2

xy = 2012^2(a - b) (b - c)

yz  = 2012^2 (b -c) (c - a)

xz =  2012^2 (a - b)(c - a)

 

So

 

 {x^2 + y^2 + z^2}/{xy + yz + zx}  =

 

[  2012^2 [  ( a- b)^2  + (b - c)^2 + ( c - a)^2 ] ]/ [ 2012^2 [ (a-b)(b -c) +(b -c)(c - a) +(a -b) (c-a)] ]

 

[ ( a - b)^2 + (b - c)^2  + (c - a)^2) ]  /  [  (b - c) ( a - b + c - a)  + (a - b)(c - a) ]

 

[ ( a - b)^2 + (b  - c)^2 + (c - a)^2 ]  /  [  (b -c) (c - b) + ( a - b)(c - a) ] 

 

[  a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + c^2 - 2ac + a^2]  / [  - ( b - c)^2  + (a - b)(c - a)]

 

[  2 [ a^2 + b^2 + c^2]  - 2 [ ab + bc + ac ] ]/ [ -b^2 + 2bc - c^2   + ac - bc - a^2 + ab ]

 

[ 2 [ a^2 + b^2 + c^2] - 2 [ ab + bc + ac] ] / [ - [ a^2 + b^2 + c^2]  + [ ab + bc + ac] ]

 

[ 2  [ a^2 + b^2 + c^2 - ab - bc - ac ] ]  /  [ - 1 [ a^2 + b^2 + c^2 - ab + bc + ac ] ]

 

=

 

2 / -1  =

 

-2

 

 

cool cool cool

 Jan 25, 2018

7 Online Users

avatar