Let x, y, and z be nonzero real numbers. Find all possible values of x/|x| + y/|y| + z/|z|.
x/|x| = + or - 1 the same with the y and z terms
+-1 +-1 +-1 = 3,-3, 1, -1
Let x, y, and z be nonzero real numbers. Find all possible values of x/|x| + y/|y| + z/|z|.
Hello Guest!
\(If\ x\{y,z\}<0\ than\ \frac{x\{y.z\}}{|x\{y,z\}|}=-1\\ If\ x>0\ than\ \frac{x}{|x|}=1\)
\(\frac{x}{|x|}+\frac{y}{|y|}+\frac{z}{|z|}=\)
1+1+1 = 3
1+1(-1) = 1
1+(-1)+1 = 1
1+(-1)+(-1) = -1
-1+1+1 = 1
-1+1+(-1) = -1
-1+(-1)+1 = -1
-1,+(-1)+(-1) = -3
\(\frac{x}{|x|}+\frac{y}{|y|}+\frac{z}{|z|} \in \{ -3,-1,\ 1,\ 3\}\)
!