Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+3
3636
9
avatar+102 
Entered Answer Preview Result Messages
(r^2)*[e^(r*x)]-3*r*[e^(r*x)]-40*[e^(r*x)]  r^2*e^(rx)-3*r*e^(rx)-40*e^(rx) correct  
(e^rx)*[(r-8)*(r+5)]
                                                             
incorrect Powers must be either 0 or 1
-5, 8
−5,8
correct  

 

At least one of the answers above is NOT correct.

 

 
 
 
(1 pt) Let y′′−3y′−40y=0.
  1. Try a solution of the form y=erx, for some unknown constant r, by substituting it into the differential equation. 
                 r^2*e^(rx)-3*r*e^(rx)-40*e^(rx)=0.

  2. Simplify and factor your equation in the previous part as much as possible. Be sure to divide out any factors guaranteed to be nonzero. 
    ______________=0.

  3. Find all values of r such that y=erx satisfies the differential equation. If there is more than one correct answer, enter your answers as a comma separated list. 
                 r= -5,8
 Sep 9, 2014

Best Answer 

 #3
avatar+118702 
+8

y"3y40y=0.Tryy=erxy=rerxy"=r2erxThe question becomesr2erx3rerx40erx=0erx(r23r40)=0erx(r8)(r+5)=0The only solutions to this are r=8andr=5

.
 Sep 9, 2014
 #1
avatar+8262 
0

Hello. What are we going to find to help you? 

And great answer in the negative 1 and negative 2 question.

 Sep 9, 2014
 #2
avatar+102 
+3

i mea a and c are correct but when i simplify the b as (e^rx)*[(r-8)*(r+5)]  i gotta do something else i think

 Sep 9, 2014
 #3
avatar+118702 
+8
Best Answer

y"3y40y=0.Tryy=erxy=rerxy"=r2erxThe question becomesr2erx3rerx40erx=0erx(r23r40)=0erx(r8)(r+5)=0The only solutions to this are r=8andr=5

Melody Sep 9, 2014
 #4
avatar+118702 
+3

Dragon, this stuff is way over the top of your head.  Sorry mate.

 

Milkshake,

Does that help?

 Sep 9, 2014
 #5
avatar+126 
+3

this is so confusing I can't help and hey guys.

 Sep 9, 2014
 #6
avatar+102 
+3

i found the solution for my own!)

(e^0)*[(r-8)*(r+5)] 

http://i62.tinypic.com/6iu26h.jpg

 Sep 9, 2014
 #7
avatar+126 
+3

so you searched it?

 Sep 9, 2014
 #8
avatar+8262 
0

I could think of it on top on my head...

Homework Help

           

 Sep 9, 2014
 #9
avatar+8262 
0

But great answer, though. Keep it up, or lose the grand war of  Camelot.

 Sep 9, 2014

2 Online Users

avatar