+0  
 
0
673
2
avatar+97 

 lim    ln(1+3x)

x->0        x           = 3      Is that correct?

 

 

Help with this please ---->  lim  xcotx

                                         x->0

 

Thanks!

 Jan 19, 2017
edited by Voncave  Jan 19, 2017
edited by Voncave  Jan 19, 2017

Best Answer 

 #1
avatar
+10

Yes lim is 3.     Use L'Hopital's theorem.  That is   lim  f(x)/ g(x)      =  lim f'(x) /g'x)   and you will get

lim  =ln'(1+3x)  /(x')   =    [ {1/(1+3x)} (3)  ]  /1   = 3/(1 +3x)  which tends to 3/(1  + 0)    = 3

 

Second one, lim  xcot(x)    = lim x { cos(x)/sin(x)}   = lim  { x cos (x)}  /sin (x)

 

divide numerator and denomimator by x   , lim  = cos(x) /  { sin(x) /x }

 

Now,{sin(x)}/x  tends to 1 as x tends to zero    so lim  = cos(x) /1  as x tends to zero,which is   1   since cos zero =1

 Jan 19, 2017
 #1
avatar
+10
Best Answer

Yes lim is 3.     Use L'Hopital's theorem.  That is   lim  f(x)/ g(x)      =  lim f'(x) /g'x)   and you will get

lim  =ln'(1+3x)  /(x')   =    [ {1/(1+3x)} (3)  ]  /1   = 3/(1 +3x)  which tends to 3/(1  + 0)    = 3

 

Second one, lim  xcot(x)    = lim x { cos(x)/sin(x)}   = lim  { x cos (x)}  /sin (x)

 

divide numerator and denomimator by x   , lim  = cos(x) /  { sin(x) /x }

 

Now,{sin(x)}/x  tends to 1 as x tends to zero    so lim  = cos(x) /1  as x tends to zero,which is   1   since cos zero =1

Guest Jan 19, 2017
 #2
avatar+97 
0

Thanks!

Voncave  Jan 19, 2017

1 Online Users

avatar