We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

\(\lim_{n\rightarrow ∞} \sum_{i=1}^{n} \frac{2}{n}(\frac{i}{n})^2\)


Just to make things easier↓↓

\(i^2\) = \(\frac{n(n+1)(2n+1)}{6}\)

 Apr 18, 2019

It is easy enough, even with that incorrect formula :)

The correct formula should be \(\displaystyle \sum^{n}_{i=1} i^2 = \dfrac{n(n+1)(2n+1)}{6}\).

Obviously, this limit is a Riemann integral.

\( S = \displaystyle{\lim_{n\rightarrow \infty} \sum_{i=1}^{n}\left(\left(\dfrac{2}{n}\right)\left(\dfrac{i}{n}\right)^2\right)\\ \;\;\;\!= 2\lim_{n\rightarrow \infty} \sum_{k=1}^{n}\left(\left(\dfrac{1}{n}\right)\left(\dfrac{k}{n}\right)^2\right)\\ \boxed{\text{Riemann integral: For any function f continuous on [0,1], } \lim_{n\rightarrow \infty}\sum^{n}_{k=1}\dfrac{1}{n}f\left(\dfrac{k}{n}\right) = \int^1_0f(x)dx }\\ S=2\int^1_0x^ 2dx\\\;\;\;\!=2\left(\dfrac{1}{3}\right)\\\;\;\;\!=\dfrac{2}{3} }\)

 Apr 18, 2019

13 Online Users