+0  
 
+2
41
1
avatar+28 

Show that \(f(x) = x\sqrt{x+3}\) is continuous at the point x = -1 using the definition of continuity. (It must show the three conditions of continuity satisfied)

So far I've boiled it down to:
f(-1) = ??
\(\lim_{x\rightarrow -1} f(x)\) = ??
\(\lim_{x\rightarrow -1} f(x) = f(-1)\) (How to prove?)

CurlyFry  Feb 8, 2018
Sort: 

1+0 Answers

 #1
avatar+82944 
+1

1. If the function is continuous at x = -1, f(-1)  and  lim as x → -1  from  both sides  must have the same value

 

 

f(-1)  =  -1 √ [ - 1 + 3 ]   =   - √2

 

 

And

 

 

 

lim              x √ [ x + 3 ]   =   (-1) √ [-1 + 3]  =   -√2

x → -1

 

So this is true

 

2. Also    f(a)   must  =  the limit as it approaches "a"  from the right and the left

These are going to look similar

 

lim              x √ [ x + 3 ]   =   (-1) √ [-1 + 3]  =   -√2       =  f(-1)

x → -1+

 

And

 

lim              x √ [ x + 3 ]   =   (-1) √ [-1 + 3]  =   -√2   =  f(-1)

x → -1-

 

 

So...we have proved that

 

1. The limit - from both sides - is the same as the function value at  x  = -1

2. The limit from the right side is the same as the function value at x  = -1

3.  The limit from the left side is the same as the function value at x  = -1

 

 

 

cool cool cool

CPhill  Feb 8, 2018
edited by CPhill  Feb 8, 2018

9 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details