+0  
 
0
187
1
avatar+27 

Show that \(f(x) = x\sqrt{x+3}\) is continuous at the point x = -1 using the definition of continuity. (It must show the three conditions of continuity satisfied)

So far I've boiled it down to:
f(-1) = ??
\(\lim_{x\rightarrow -1} f(x)\) = ??
\(\lim_{x\rightarrow -1} f(x) = f(-1)\) (How to prove?)

CurlyFry  Feb 8, 2018
 #1
avatar+92808 
+1

1. If the function is continuous at x = -1, f(-1)  and  lim as x → -1  from  both sides  must have the same value

 

 

f(-1)  =  -1 √ [ - 1 + 3 ]   =   - √2

 

 

And

 

 

 

lim              x √ [ x + 3 ]   =   (-1) √ [-1 + 3]  =   -√2

x → -1

 

So this is true

 

2. Also    f(a)   must  =  the limit as it approaches "a"  from the right and the left

These are going to look similar

 

lim              x √ [ x + 3 ]   =   (-1) √ [-1 + 3]  =   -√2       =  f(-1)

x → -1+

 

And

 

lim              x √ [ x + 3 ]   =   (-1) √ [-1 + 3]  =   -√2   =  f(-1)

x → -1-

 

 

So...we have proved that

 

1. The limit - from both sides - is the same as the function value at  x  = -1

2. The limit from the right side is the same as the function value at x  = -1

3.  The limit from the left side is the same as the function value at x  = -1

 

 

 

cool cool cool

CPhill  Feb 8, 2018
edited by CPhill  Feb 8, 2018

16 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.