We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
53
3
avatar+250 

Lines with slopes -1 and -2 are drawn through the first quadrant point (a,b) forming one triangle with a side on the x-axis and the other with one side on the y-axis. What is the total area of the two shaded triangles? (Write you answers in terms of a and b)

 

Thanks

 May 2, 2019
 #1
avatar+22188 
+3

Lines with slopes -1 and -2 are drawn through the first quadrant point (a,b) forming one triangle

with a side on the x-axis and the other with one side on the y-axis.

What is the total area of the two shaded triangles? (Write you answers in terms of a and b)

\(\mathbf{b_1=\ ?}\)

\(\begin{array}{|rcll|} \hline y&=&-x+b_1 \quad | \quad P(a,b) \text{ on line} \\ b&=&-a+b_1 \\ \mathbf{b_1} &=& \mathbf{a+b} \\\\ \mathbf{y} &=& \mathbf{-x+(a+b)} \\ \hline \end{array}\)

 

\(\mathbf{b_2=\ ?}\)

\(\begin{array}{|rcll|} \hline y&=&-2x+b_2 \quad | \quad P(a,b) \text{ on line} \\ b&=&-2a+b_2 \\ \mathbf{b_2} &=& \mathbf{2a+b} \\\\ \mathbf{y} &=& \mathbf{-2x+(2a+b)} \\ \hline \end{array}\)

 

\(\mathbf{y=0}\\ \mathbf{c_x=\ ?} \)

\(\begin{array}{|rcll|} \hline 0 &=& -x_1+(a+b) \\ \mathbf{x_1} &=& \mathbf{a+b} \\\\ 0 &=& -2x+(2a+b) \\ 2x &=& 2a+b \\ \mathbf{x_2} &=& \mathbf{a+\dfrac{b}{2}} \\\\ c_x &=& x_1-x_2 \\ &=& a+b - \left(a+\dfrac{b}{2} \right) \\ \mathbf{c_x} &=& \mathbf{\dfrac{b}{2}} \\ \hline \end{array}\)


\(\mathbf{x=0}\\ \mathbf{c_y=\ ?}\)

\(\begin{array}{|rcll|} \hline y_1 &=& -0 +(a+b) \\ \mathbf{y_1} &=& \mathbf{a+b} \\\\ y_2 &=& -2\cdot 0+(2a+b) \\ &=& 2a+b \\ \mathbf{y_2} &=& \mathbf{2a+b} \\\\ c_y &=& y_2-y_1 \\ &=& 2a+b-(a+b) \\ \mathbf{c_y} &=& \mathbf{a} \\ \hline \end{array}\)

 

\(\mathbf{A_x=\ ?} \)

\(\begin{array}{|rcll|} \hline A_x &=& \dfrac{c_xh_x}{2} \quad | \quad h_x = b,\qquad c_x = \dfrac{b}{2} \\\\ &=& \dfrac{\dfrac{b}{2}\cdot b}{2} \\\\ \mathbf{A_x} &=& \mathbf{\dfrac{b^2}{4}} \\ \hline \end{array}\)

 

\(\mathbf{A_y=\ ?}\)

\(\begin{array}{|rcll|} \hline A_y &=& \dfrac{c_yh_y}{2} \quad | \quad h_y = a,\qquad c_y = a \\\\ &=& \dfrac{a\cdot a}{2} \\\\ \mathbf{A_y} &=& \mathbf{\dfrac{a^2}{2}} \\ \hline \end{array}\)

 

\(\mathbf{A=\ ?}\)

\(\begin{array}{|rcll|} \hline A&=& A_x + A_y \\ &=& \dfrac{b^2}{4} + \dfrac{a^2}{2} \\ \mathbf{A} &=& \mathbf{\dfrac{1}{2}\cdot \left( a^2 + \dfrac{b^2}{2} \right) } \\ \hline \end{array} \)

 

laugh

 May 2, 2019
 #2
avatar+100586 
+2

Very nice, heureka.....I Iike this problem  !!!

 

 

 

cool cool cool

CPhill  May 3, 2019
 #3
avatar+22188 
+1

Thank you, CPhill !

 

laugh

heureka  May 3, 2019

8 Online Users