+0  
 
+2
248
1
avatar+451 

y=mx+b (solve for b)

 

A=h(b+c) (solve for b)

 

A=4r^2 (solve for r^2)

 

7x-y=14 (solve for x)

 

R= (E/i) (solve for i)

 

A= (r/2L) (solve for L)

Neptune  Oct 19, 2017

Best Answer 

 #1
avatar+7153 
+2
Solve for  b .          
y   =   mx + b Subtract  mx  from both sides of the equation.
y - mx   =   b  
   
Solve for  b .  
A   =   h(b + c) Divide both sides of the equation by  h  .
A / h   =   b + c Subtract  c  from both sides of the equation.
A / h  -  c   =   b  
   
Solve for r2 .  
A   =   4r2  Divide both sides of the equation by  4 .
A / 4   =   r2  
   
Solve for  x .  
7x - y  =  14 First add  y  to both sides. See if you can figure the rest out. smiley
   
Solve for  i .  
R  =  (E / i) Multiply both sides of the equation by  i .
i * R  =  E Divide both sides of the equation by  R.
i  =  E / R  
   
Solve for  L . Using this as the equation  A = \(\frac{r}2\)L ,
A  =  \(\frac{r}2\)L multiply both sides by  \(\frac2r\) .
\(\frac2r\) * A  = \(\frac{2}{r}\) * \(\frac{r}{2}\) * L  
\(\frac{2A}{r}\)  =  L If you meant for the equation to be  A = \(\frac{r}{2L}\) , then it is different!
hectictar  Oct 20, 2017
 #1
avatar+7153 
+2
Best Answer
Solve for  b .          
y   =   mx + b Subtract  mx  from both sides of the equation.
y - mx   =   b  
   
Solve for  b .  
A   =   h(b + c) Divide both sides of the equation by  h  .
A / h   =   b + c Subtract  c  from both sides of the equation.
A / h  -  c   =   b  
   
Solve for r2 .  
A   =   4r2  Divide both sides of the equation by  4 .
A / 4   =   r2  
   
Solve for  x .  
7x - y  =  14 First add  y  to both sides. See if you can figure the rest out. smiley
   
Solve for  i .  
R  =  (E / i) Multiply both sides of the equation by  i .
i * R  =  E Divide both sides of the equation by  R.
i  =  E / R  
   
Solve for  L . Using this as the equation  A = \(\frac{r}2\)L ,
A  =  \(\frac{r}2\)L multiply both sides by  \(\frac2r\) .
\(\frac2r\) * A  = \(\frac{2}{r}\) * \(\frac{r}{2}\) * L  
\(\frac{2A}{r}\)  =  L If you meant for the equation to be  A = \(\frac{r}{2L}\) , then it is different!
hectictar  Oct 20, 2017

5 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.