+0  
 
0
482
3
avatar

ln ( 10.75 + 6.98i )

difficulty advanced
Guest Jan 15, 2015

Best Answer 

 #1
avatar+19638 
+10

ln ( 10.75 + 6.98i )

$$\small{\text{
$z=10.75+6.98\ i \quad \ln{(z)} = ?$
}}\\
\small{
Solution:
\boxed{ln{(z)} = \ln{(|z|)} + i*(arg(z)+2\pi k ) }
}
\\\\
\small{\text{
I. $ |z| = \sqrt{10.75^2+6.98^2} = 12.8172891050 $
}}\\
\small{\text{
II. $ \phi\ensurement{^{\circ}} = \tan^{-1}{(\frac{6.98}{10.75} )} = 32.9957575073\ensurement{^{\circ}} $
}}\\
\small{\text{
III. $ arg(z) = \phi \ensurement{^{\circ}} *
\frac{ \pi }{ 180\ensurement{^{\circ}} }+2\pi k = 0.57588460769 + 2\pi k$
}}\\\\
\small{\text{
$
\ln{(z)} = \ln{(12.8172891050 )}+i*(0.57588460769+2\pi k)
$
}}\\
\small{\text{
$
\boxed{ \ln{(10.75+6.08\ i)} = 2.55079497086+(0.57588460769+2\pi k) \ i } \quad k=0,1,2\dots
$
}}$$

heureka  Jan 15, 2015
 #1
avatar+19638 
+10
Best Answer

ln ( 10.75 + 6.98i )

$$\small{\text{
$z=10.75+6.98\ i \quad \ln{(z)} = ?$
}}\\
\small{
Solution:
\boxed{ln{(z)} = \ln{(|z|)} + i*(arg(z)+2\pi k ) }
}
\\\\
\small{\text{
I. $ |z| = \sqrt{10.75^2+6.98^2} = 12.8172891050 $
}}\\
\small{\text{
II. $ \phi\ensurement{^{\circ}} = \tan^{-1}{(\frac{6.98}{10.75} )} = 32.9957575073\ensurement{^{\circ}} $
}}\\
\small{\text{
III. $ arg(z) = \phi \ensurement{^{\circ}} *
\frac{ \pi }{ 180\ensurement{^{\circ}} }+2\pi k = 0.57588460769 + 2\pi k$
}}\\\\
\small{\text{
$
\ln{(z)} = \ln{(12.8172891050 )}+i*(0.57588460769+2\pi k)
$
}}\\
\small{\text{
$
\boxed{ \ln{(10.75+6.08\ i)} = 2.55079497086+(0.57588460769+2\pi k) \ i } \quad k=0,1,2\dots
$
}}$$

heureka  Jan 15, 2015
 #2
avatar+92781 
0

Thanks Heureka, that looks impressive  

Melody  Jan 15, 2015
 #3
avatar+26750 
+5

Here's an alternative approach (I've just considered the principal solution):

 

log of complex number

.

Alan  Jan 16, 2015

14 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.