+0

# log3 x + 11 log3 x3 = 14

0
310
1

log3 x + 11 log3 x3 = 14

Guest Jan 24, 2015

#1
+92193
+5

do you mean

$$\\log_3 x + 11 log_3 x^3 = 14\\\\ log_3 x + 33 log_3 x = 14\\\\ 34 log_3 x = 14\\\\ log_3 x = \frac{14}{34}\\\\ \frac{logx}{log3} = \frac{14}{34}\\\\ logx = \frac{14}{34}\times log3\\\\ 10^{logx} =10^{\left( \frac{14}{34}\times log3\right)}\\\\ x =10^{\left( \frac{7}{17}\times log3\right)}\\\\$$

$${{\mathtt{10}}}^{\left({\frac{{\mathtt{7}}}{{\mathtt{17}}}}{\mathtt{\,\times\,}}{log}_{10}\left({\mathtt{3}}\right)\right)} = {\mathtt{1.572\: \!033\: \!125\: \!399\: \!619\: \!1}}$$

Melody  Jan 25, 2015
Sort:

#1
+92193
+5

do you mean

$$\\log_3 x + 11 log_3 x^3 = 14\\\\ log_3 x + 33 log_3 x = 14\\\\ 34 log_3 x = 14\\\\ log_3 x = \frac{14}{34}\\\\ \frac{logx}{log3} = \frac{14}{34}\\\\ logx = \frac{14}{34}\times log3\\\\ 10^{logx} =10^{\left( \frac{14}{34}\times log3\right)}\\\\ x =10^{\left( \frac{7}{17}\times log3\right)}\\\\$$

$${{\mathtt{10}}}^{\left({\frac{{\mathtt{7}}}{{\mathtt{17}}}}{\mathtt{\,\times\,}}{log}_{10}\left({\mathtt{3}}\right)\right)} = {\mathtt{1.572\: \!033\: \!125\: \!399\: \!619\: \!1}}$$

Melody  Jan 25, 2015

### 16 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details