+0  
 
+1
46
3
avatar+599 

Let \(\log_{4}3=x\). Then \(\log_{2}27=kx\). Find \(k\).

mathtoo  Aug 21, 2018
 #1
avatar+19994 
+4

Logarithm Finding, solving for k.

\(\text{Let $\log_{4}3=x$. Then $\log_{2}27=kx$. Find $k$.}\)

 

\(\large{ \begin{array}{|llcll|} \hline (1) & \log_{4}3=x & \text{or} & 4^x = 3 \\ (2) & \log_{2}27=kx & \text{or} & 2^{(kx)} = 27 \\ \hline \end{array} } \)

 

\(\large{ \begin{array}{|rcll|} \hline 2^{(kx)} &=& 27 \\ 2^{(\frac22 kx)} &=& 27 \\ 2^{(2\frac{kx}{2})} &=& 27 \\ \left(2^2\right)^{ \frac{kx}{2} } &=& 27 \\ 4^{( \frac{kx}{2} )} &=& 27 \\ 4^{( x\frac{k}{2} )} &=& 27 \\ \left(4^x\right)^{(\frac{k}{2} )} &=& 27 \quad & | \quad 4^x = 3 \\ 3^{(\frac{k}{2} )} &=& 27 \quad & | \quad 27 = 3^3 \\ 3^{(\frac{k}{2} )} &=& 3^3 \\ \frac{k}{2} &=& 3 \\ \mathbf{k} & \mathbf{=} & \mathbf{6} \\ \hline \end{array} } \)

 

laugh

heureka  Aug 21, 2018
 #2
avatar+2983 
+2

Hello, I'm back! 

\(\log_{4}3=x\), and \(\log_{2}27=kx\) .

This means, \(4^x=3\)\(2^{(kx)}=27\).

 

This can be broken up into: \((2^2)^x=3\) , and 

‚Äč\(2^{kx}=27\).

 

 

So, \(2^{2x}=3\)\(2^{kx}=27\).
 

Cubing the first equation, we have: \((2^{2x})^3=2^{6x}\) , and \(2^{kx}=27\).

 

By scanning, we can easily see that \(\boxed{k=6}\)

tertre  Aug 21, 2018
 #3
avatar
+1

Solve for k.
2^((log(3) k)/log(4)) = 27

Take the logarithm base 2 of both sides:
(log(3) k)/log(4) = log(27)/log(2)

Divide both sides by log(3)/log(4):

k = (log(4) log(27))/(log(2) log(3))= 6

Guest Aug 21, 2018

25 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.