We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
118
3
avatar

 find \(\frac{a}{b} \) when\(2 log(a-2b) = log(a) + log(b) \)

 Mar 17, 2019
 #1
avatar+103947 
0

2 log ( a - 2b)   =  log (a) + log(b)

 

log ( a - 2b)^2  = log (ab)      .....so....

 

 

(a - 2b)^2  = ab

 

a^2 - 4ab +4b^2  =  ab

 

a^2 - 5ab + 4b^2 =  0         factor as

 

(a - 4b) ( a - b)  = 0

 

Setting each factor to 0    and solving we have that

 

a - 4b = 0              or          a - b = 0

a = 4b                                 a = b

a/b = 4                                a/b = 1

 

The second solution is no good because  if  a = b......then     a - 2b  =  a - 2a   =  -a

Which means that log ( a - 2b) = log (-a)    and is defined only if a is negative

But....on the right side of the original equation , log (a)   produces a log of a negative which is not defined for real numbers

 

So

 

a / b  = 4

 

 

cool cool cool

 Mar 17, 2019
 #2
avatar
+1

ok I got down to as much as the log(a-2b)^2 = log(ab), but the part I'm confused about is why if there are two logs on both sides you can cancel them out? 

 

EDIT: No wait, I just realized since they're the same base lol, I was being dumb 

Guest Mar 17, 2019
edited by Guest  Mar 17, 2019
 #3
avatar+103947 
0

HAHAHA!!!!!......you're not "dumb".....you just forgot.....

 

 

cool cool cool

CPhill  Mar 17, 2019

41 Online Users

avatar
avatar
avatar
avatar