\(\log_2(\log_3x)=\log_3(\log_2x) \rightarrow \text{ apply change of base to } \log_3 \text{ on both sides and change to } \log_2 \text{.}\)
\(\log_2(\frac{\log_2x}{\log_23})=\frac{\log_2(\log_2x)}{\log_23}\)
\(\log_2(\log_2x) - \log_2({\log_23})=\frac{\log_2(\log_2x)}{\log_23}\)
\(\log_2(\log_2x) \rightarrow z \; \log_23 \rightarrow y\)
\(z-\log_2y=\frac{z}{y}\)
\(z=\frac{y\log_2y}{y-1}\)
\(x=2^{2^{\frac{(\log_23)(\log_2(\log_23))}{\log_2{3}-1}}}\)
.