y = log 2 (2x)
y= log 4 (16 + x)
Change of base theorem
log ( 2x) / log 2 = log (16 + x) / log 4
log (2x) / log 2 = log (16 + x) / log 2^2
log (2x) / log 2 = log (16 + x) / [ 2 log 2] {multiply both sides by log 2 }
log (2x) = log (16 + x) / 2
2 log (2x) = log (16 + x)
log (2x)^2 = log (16 + x) implies that
2x^2 = 16 + x
4x^2 - x - 16 = 0 { x must be positive }
x = [ 1 + sqrt [ 1 + 256 ] ] / 8 = [ 1 + sqrt (257) ] / 8