\(6 = \log\left(\dfrac{I_1}{I_s}\right) \\ 8=\log\left(\dfrac{I_2}{I_s}\right) \\ 10^6=\dfrac{I_1}{I_s}\\ 10^8=\dfrac{I_2}{I_s} \\ \dfrac{I_2}{I_1} = \dfrac{10^8}{10^6} = 10^2 = 100\)
.M = log ( I / S)
In Exponential form, we have
10^M = (I /S)
So...we have this situation
10^8 = (I8/S) ⇒ S * 10^8 = I8 (1)
and
10^6 = (I6/S) ⇒ S * 10^6 = I6 (2)
So take the ratio of (1) / (2) and we have
I8 / I6 = S* 10^8 / S* 10^6
I8 / I6 = 10^8 / 10^6
I8 / I6 = 10^(8 - 6)
I8 / I6 = 10^2 = 100 times stronger