+0  
 
0
113
1
avatar+98 

 see image 
What is the equation of this circle in general form?  answer choices below image


x2+y2−6x+4=0 
x2+y2−6x−16=0 
x2+y2+6x−16=0 
x² + y² + 6x + 4 = 0

CrazyDaizy  Jun 6, 2017

Best Answer 

 #1
avatar+4694 
+1

From looking at the graph, we can see that

the center of this circle is the point   (3, 0)      and

the radius of this circle is   5   units.

 

So, the equation of this circle in standard form is:

(x - 3)2 + (y - 0)2  =  52          Simplified, this is....

(x - 3)2 + y2  =  25

 

To get this equation in general form, first multiply out the (x - 3).

(x - 3)(x - 3) + y2  =  25

x2 - 3x - 3x + 9 + y2  =  25             Subtract 25 from both sides of the equation.

x2 - 3x - 3x + 9 + y2 - 25  =  0        Combine like terms and rearrange.

x2 + y2 - 6x - 16  =  0

hectictar  Jun 6, 2017
Sort: 

1+0 Answers

 #1
avatar+4694 
+1
Best Answer

From looking at the graph, we can see that

the center of this circle is the point   (3, 0)      and

the radius of this circle is   5   units.

 

So, the equation of this circle in standard form is:

(x - 3)2 + (y - 0)2  =  52          Simplified, this is....

(x - 3)2 + y2  =  25

 

To get this equation in general form, first multiply out the (x - 3).

(x - 3)(x - 3) + y2  =  25

x2 - 3x - 3x + 9 + y2  =  25             Subtract 25 from both sides of the equation.

x2 - 3x - 3x + 9 + y2 - 25  =  0        Combine like terms and rearrange.

x2 + y2 - 6x - 16  =  0

hectictar  Jun 6, 2017

6 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details