We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
160
1
avatar+814 

Let \(z_1\) and \(z_2\) be complex numbers such that \(\frac{z_2}{z_1}\) is pure imaginary and \(2z_1 \neq 7z_2.\) Compute \(\left| \frac{2z_1 + 7z_2}{2z_1 - 7z_2} \right|.\)
 

 Dec 27, 2018
 #1
avatar+5225 
+1

\(\dfrac{2z_1+7z_2}{2z_1-7z_2} = \\ \dfrac{2+7\frac{z_2}{z_1}}{2-7\frac{z_2}{z_1}}\\ \text{let }w = 2+ 7\frac{z_2}{z_1}\\ \dfrac{2+7\frac{z_2}{z_1}}{2-7\frac{z_2}{z_1}} = \dfrac{w}{w^*}\)

 

\(\text{You should know, or you can prove it as an exercise, that }\\ \forall z \in \mathbb{C},~z\neq 0,~\left|\dfrac{z}{z^*}\right| = 1 \text{ so,}\\ \left|\dfrac{2z_1+7z_2}{2z_1-7z_2}\right| = 1\)

.
 Dec 27, 2018
edited by Rom  Dec 28, 2018

9 Online Users

avatar