+0  
 
0
71
2
avatar+278 

make "p" the subject.

 

\(x={5 \over3}- \sqrt{2p-1}\)

 

I did this:

 

\({3 \over5}x=- \sqrt{2p-1} \)

 

\(({3\over5}x)^2 = -2p-1\)

 

\(\)\(({3\over5}x)^2 + 1 = -2p\)

 

\({9 \over25}x^2 + 1 = -2p\)

 

\({34 \over25}x^2 = -2p\)

 

\(-{1 \over2}*{34 \over25}x^2 = p\)

 

\(-{17 \over25}x^2 = p\)

 

Is this correct?...Thank you for your time...

juriemagic  Nov 12, 2018
edited by juriemagic  Nov 12, 2018

Best Answer 

 #1
avatar+20598 
+8

make "p" the subject.
\(\displaystyle x={5 \over3}- \sqrt{2p-1}\)

 

\(\begin{array}{|rcll|} \hline x &=& \dfrac{5}{3} - \sqrt{2p-1} \quad & | \quad -\dfrac{5}{3} \\ x-\dfrac{5}{3} &=& - \sqrt{2p-1} \quad & | \quad \times(-1) \\ -x+\dfrac{5}{3} &=& \sqrt{2p-1} \\ \dfrac{5}{3}-x &=& \sqrt{2p-1} \quad & | \quad \text{square both sides} \\ \left(\dfrac{5}{3}-x\right)^2 &=& 2p-1 \quad & | \quad +1 \\ \left(\dfrac{5}{3}-x\right)^2+1 &=& 2p \quad & | \quad :2 \\ \mathbf{\dfrac{ \left(\dfrac{5}{3}-x\right)^2+1 } {2}} & \mathbf{=}& \mathbf{p} \\ \hline \end{array}\)

 

laugh

heureka  Nov 12, 2018
 #1
avatar+20598 
+8
Best Answer

make "p" the subject.
\(\displaystyle x={5 \over3}- \sqrt{2p-1}\)

 

\(\begin{array}{|rcll|} \hline x &=& \dfrac{5}{3} - \sqrt{2p-1} \quad & | \quad -\dfrac{5}{3} \\ x-\dfrac{5}{3} &=& - \sqrt{2p-1} \quad & | \quad \times(-1) \\ -x+\dfrac{5}{3} &=& \sqrt{2p-1} \\ \dfrac{5}{3}-x &=& \sqrt{2p-1} \quad & | \quad \text{square both sides} \\ \left(\dfrac{5}{3}-x\right)^2 &=& 2p-1 \quad & | \quad +1 \\ \left(\dfrac{5}{3}-x\right)^2+1 &=& 2p \quad & | \quad :2 \\ \mathbf{\dfrac{ \left(\dfrac{5}{3}-x\right)^2+1 } {2}} & \mathbf{=}& \mathbf{p} \\ \hline \end{array}\)

 

laugh

heureka  Nov 12, 2018
 #2
avatar+278 
+2

Heureka,

 

Thank you so much for the answer....how daft of me, to multiply the fraction instead of subtracting it...gosh..blush..thank you kindly..

juriemagic  Nov 12, 2018

29 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.