Please check the question.
427(23+m3+23m)3427((23+m3)3+3(23+m3)2(23m)+3(23+m3)(23m)2+(23m)3)427((2(3+m)+3(2(1+m3))2(23m)+3(21+m3)(26m)+(29m))427((2(3+m)+3(2(2+2m3))(23m)+3(21+m3)(26m)+(29m))2233((232m+3(222(2m3))(23m)+3(2∗2(m3))(26m)+(29m))
I can keep going but this is not going to fall out nicely.
LaTex:
\frac{4}{27}\left(2^{\frac{3+m}{3}}+2^{\frac{3}{m}}\right)^3\\
\frac{4}{27}\left((2^{\frac{3+m}{3}})^3 + 3 (2^{\frac{3+m}{3}})^2 (2^{\frac{3}{m}}) +3(2^{\frac{3+m}{3}}) (2^{\frac{3}{m}})^2 + (2^{\frac{3}{m}})^3 \right)\\
\frac{4}{27}\left((2^{(3+m)} + 3 (2^{(1+\frac{m}{3})})^2 (2^{\frac{3}{m}}) +3(2^{1+\frac{m}{3}}) (2^{\frac{6}{m}}) + (2^{\frac{9}{m}}) \right)\\
\frac{4}{27}\left((2^{(3+m)} + 3 (2^{(2+\frac{2m}{3})}) (2^{\frac{3}{m}}) +3(2^{1+\frac{m}{3}}) (2^{\frac{6}{m}}) + (2^{\frac{9}{m}}) \right)\\
\frac{2^2}{3^3}\left((2^32^m + 3 (2^2 2^{(\frac{2m}{3})}) (2^{\frac{3}{m}}) +3(2* 2^{(\frac{m}{3})}) (2^{\frac{6}{m}}) + (2^{\frac{9}{m}}) \right)\\
Here’s a neat and orderly way to transcribe this as a power of (2):
2log2(427(23+m3+23m)3)
GA
--. .-
Guys im confused.
From trials and error I found that: 2m+2 works for some reason.
Help me with your knowledge!!